Binary coronas of balleans

A ballean B is a set X endowed with some family of subsets of X which are called the balls. We postulate the properties of the family of balls in such a way that a ballean can be considered as an asymptotic counterpart of a uniform topological space. Using slow oscillating functions from X to {0,...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Algebra and Discrete Mathematics
Дата:2003
Автор: Protasov, I.V.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2003
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/155724
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Binary coronas of balleans / I.V. Protasov // Algebra and Discrete Mathematics. — 2003. — Vol. 2, № 4. — С. 50–65. — Бібліогр.: 9 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-155724
record_format dspace
spelling Protasov, I.V.
2019-06-17T11:17:31Z
2019-06-17T11:17:31Z
2003
Binary coronas of balleans / I.V. Protasov // Algebra and Discrete Mathematics. — 2003. — Vol. 2, № 4. — С. 50–65. — Бібліогр.: 9 назв. — англ.
2000 Mathematics Subject Classification: 05C25, 20F65, 54A05, 54E15.
1726-3255
https://nasplib.isofts.kiev.ua/handle/123456789/155724
A ballean B is a set X endowed with some family of subsets of X which are called the balls. We postulate the properties of the family of balls in such a way that a ballean can be considered as an asymptotic counterpart of a uniform topological space. Using slow oscillating functions from X to {0, 1}, we define a zero-dimensional compact space which is called a binary corona of B. We define a class of binary normal ballean and, for every ballean from this class, give an intrinsic characterization of its binary corona. The class of binary normal balleans contains all balleans of graph. We show that a ballean of graph is a projective limit of some sequence of C˘ech-Stone compactifications of discrete spaces. The obtained results witness that a binary corona of balleans can be interpreted as a "generalized space of ends" of ballean.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Binary coronas of balleans
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Binary coronas of balleans
spellingShingle Binary coronas of balleans
Protasov, I.V.
title_short Binary coronas of balleans
title_full Binary coronas of balleans
title_fullStr Binary coronas of balleans
title_full_unstemmed Binary coronas of balleans
title_sort binary coronas of balleans
author Protasov, I.V.
author_facet Protasov, I.V.
publishDate 2003
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description A ballean B is a set X endowed with some family of subsets of X which are called the balls. We postulate the properties of the family of balls in such a way that a ballean can be considered as an asymptotic counterpart of a uniform topological space. Using slow oscillating functions from X to {0, 1}, we define a zero-dimensional compact space which is called a binary corona of B. We define a class of binary normal ballean and, for every ballean from this class, give an intrinsic characterization of its binary corona. The class of binary normal balleans contains all balleans of graph. We show that a ballean of graph is a projective limit of some sequence of C˘ech-Stone compactifications of discrete spaces. The obtained results witness that a binary corona of balleans can be interpreted as a "generalized space of ends" of ballean.
isbn 2000 Mathematics Subject Classification: 05C25, 20F65, 54A05, 54E15.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/155724
citation_txt Binary coronas of balleans / I.V. Protasov // Algebra and Discrete Mathematics. — 2003. — Vol. 2, № 4. — С. 50–65. — Бібліогр.: 9 назв. — англ.
work_keys_str_mv AT protasoviv binarycoronasofballeans
first_indexed 2025-12-07T16:34:02Z
last_indexed 2025-12-07T16:34:02Z
_version_ 1850867965905338368