Normal subdigroups and the isomorphism theorems for digroup
We discuss the notion of normality of a sub-object in the category of digroups. This allows us to define quotient digroups, and then establish the corresponding analogues of the classical Isomorphism Theorems.
Збережено в:
| Опубліковано в: : | Algebra and Discrete Mathematics |
|---|---|
| Дата: | 2016 |
| Автори: | , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2016
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/155734 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Normal subdigroups and the isomorphism theorems for digroup / F. Ongay, R.E. Velásquez, L.A. Wills-Toro // Algebra and Discrete Mathematics. — 2016. — Vol. 22, № 2. — С. 262-283. — Бібліогр.: 7 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-155734 |
|---|---|
| record_format |
dspace |
| spelling |
Ongay, F. Velásquez, R.E. Wills-Toro, L.A. 2019-06-17T11:32:06Z 2019-06-17T11:32:06Z 2016 Normal subdigroups and the isomorphism theorems for digroup / F. Ongay, R.E. Velásquez, L.A. Wills-Toro // Algebra and Discrete Mathematics. — 2016. — Vol. 22, № 2. — С. 262-283. — Бібліогр.: 7 назв. — англ. 1726-3255 2010 MSC:Primary 20N99. https://nasplib.isofts.kiev.ua/handle/123456789/155734 We discuss the notion of normality of a sub-object in the category of digroups. This allows us to define quotient digroups, and then establish the corresponding analogues of the classical Isomorphism Theorems. Partially supported by CONACYT, Mexico, research project 106 923 Partially supported by Universidad de Antioquia, CODI research project “Álgebrasno asociativas” Partially supported by Universidad Nacional de Colombia, research project 30232“Ideales y Derivaciones en Álgebras de Leibniz” en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics Normal subdigroups and the isomorphism theorems for digroup Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Normal subdigroups and the isomorphism theorems for digroup |
| spellingShingle |
Normal subdigroups and the isomorphism theorems for digroup Ongay, F. Velásquez, R.E. Wills-Toro, L.A. |
| title_short |
Normal subdigroups and the isomorphism theorems for digroup |
| title_full |
Normal subdigroups and the isomorphism theorems for digroup |
| title_fullStr |
Normal subdigroups and the isomorphism theorems for digroup |
| title_full_unstemmed |
Normal subdigroups and the isomorphism theorems for digroup |
| title_sort |
normal subdigroups and the isomorphism theorems for digroup |
| author |
Ongay, F. Velásquez, R.E. Wills-Toro, L.A. |
| author_facet |
Ongay, F. Velásquez, R.E. Wills-Toro, L.A. |
| publishDate |
2016 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
We discuss the notion of normality of a sub-object in the category of digroups. This allows us to define quotient digroups, and then establish the corresponding analogues of the classical Isomorphism Theorems.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/155734 |
| citation_txt |
Normal subdigroups and the isomorphism theorems for digroup / F. Ongay, R.E. Velásquez, L.A. Wills-Toro // Algebra and Discrete Mathematics. — 2016. — Vol. 22, № 2. — С. 262-283. — Бібліогр.: 7 назв. — англ. |
| work_keys_str_mv |
AT ongayf normalsubdigroupsandtheisomorphismtheoremsfordigroup AT velasquezre normalsubdigroupsandtheisomorphismtheoremsfordigroup AT willstorola normalsubdigroupsandtheisomorphismtheoremsfordigroup |
| first_indexed |
2025-12-07T21:04:37Z |
| last_indexed |
2025-12-07T21:04:37Z |
| _version_ |
1850884989506289664 |