Amply (weakly) Goldie-Rad-supplemented modules

Let R be a ring and M be a right R-module. We say a submodule S of M is a \textit{(weak) Goldie-Rad-supplement} of a submodule N in M, if M=N+S, (N∩S≤Rad(M)) N∩S≤Rad(S) and Nβ∗∗S, and M is called amply (weakly) Goldie-Rad-supplemented if every submodule of M has ample (weak) Goldie-Rad-supplements...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and Discrete Mathematics
Datum:2016
1. Verfasser: Mutlu, F.T.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2016
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/155747
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Amply (weakly) Goldie-Rad-supplemented modules / F.T. Mutlu // Algebra and Discrete Mathematics. — 2016. — Vol. 22, № 1. — С. 94-101. — Бібліогр.: 6 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-155747
record_format dspace
spelling Mutlu, F.T.
2019-06-17T11:40:13Z
2019-06-17T11:40:13Z
2016
Amply (weakly) Goldie-Rad-supplemented modules / F.T. Mutlu // Algebra and Discrete Mathematics. — 2016. — Vol. 22, № 1. — С. 94-101. — Бібліогр.: 6 назв. — англ.
1726-3255
2010 MSC:16D10, 16D40, 16D70.
https://nasplib.isofts.kiev.ua/handle/123456789/155747
Let R be a ring and M be a right R-module. We say a submodule S of M is a \textit{(weak) Goldie-Rad-supplement} of a submodule N in M, if M=N+S, (N∩S≤Rad(M)) N∩S≤Rad(S) and Nβ∗∗S, and M is called amply (weakly) Goldie-Rad-supplemented if every submodule of M has ample (weak) Goldie-Rad-supplements in M. In this paper we study various properties of such modules. We show that every distributive projective weakly Goldie-Rad-Supplemented module is amply weakly Goldie-Rad-Supplemented. We also show that if M is amply (weakly) Goldie-Rad-supplemented and satisfies DCC on (weak) Goldie-Rad-supplement submodules and on small submodules, then M is Artinian.
This study was supported by Anadolu University Scientific Research Projects Commission under the grant no:1505F225.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Amply (weakly) Goldie-Rad-supplemented modules
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Amply (weakly) Goldie-Rad-supplemented modules
spellingShingle Amply (weakly) Goldie-Rad-supplemented modules
Mutlu, F.T.
title_short Amply (weakly) Goldie-Rad-supplemented modules
title_full Amply (weakly) Goldie-Rad-supplemented modules
title_fullStr Amply (weakly) Goldie-Rad-supplemented modules
title_full_unstemmed Amply (weakly) Goldie-Rad-supplemented modules
title_sort amply (weakly) goldie-rad-supplemented modules
author Mutlu, F.T.
author_facet Mutlu, F.T.
publishDate 2016
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description Let R be a ring and M be a right R-module. We say a submodule S of M is a \textit{(weak) Goldie-Rad-supplement} of a submodule N in M, if M=N+S, (N∩S≤Rad(M)) N∩S≤Rad(S) and Nβ∗∗S, and M is called amply (weakly) Goldie-Rad-supplemented if every submodule of M has ample (weak) Goldie-Rad-supplements in M. In this paper we study various properties of such modules. We show that every distributive projective weakly Goldie-Rad-Supplemented module is amply weakly Goldie-Rad-Supplemented. We also show that if M is amply (weakly) Goldie-Rad-supplemented and satisfies DCC on (weak) Goldie-Rad-supplement submodules and on small submodules, then M is Artinian.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/155747
citation_txt Amply (weakly) Goldie-Rad-supplemented modules / F.T. Mutlu // Algebra and Discrete Mathematics. — 2016. — Vol. 22, № 1. — С. 94-101. — Бібліогр.: 6 назв. — англ.
work_keys_str_mv AT mutluft amplyweaklygoldieradsupplementedmodules
first_indexed 2025-12-07T19:12:21Z
last_indexed 2025-12-07T19:12:21Z
_version_ 1850877926338199552