Transformations of (0,1] preserving tails of Δμ-representation of numbers

In the paper, classes of continuous strictly increasing functions preserving ``tails'' of Δμ-representation of numbers are constructed. Using these functions we construct also continuous transformations of (0,1]. We prove that the set of all such transformations is infinite and forms non-c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and Discrete Mathematics
Datum:2016
Hauptverfasser: Isaieva, T.M., Pratsiovytyi, M.V.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2016
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/155748
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Transformations of (0,1] preserving tails of Δμ-representation of numbers / T.M. Isaieva, M.V. Pratsiovytyi // Algebra and Discrete Mathematics. — 2016. — Vol. 22, № 1. — С. 102-115. — Бібліогр.: 25 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-155748
record_format dspace
spelling Isaieva, T.M.
Pratsiovytyi, M.V.
2019-06-17T11:41:41Z
2019-06-17T11:41:41Z
2016
Transformations of (0,1] preserving tails of Δμ-representation of numbers / T.M. Isaieva, M.V. Pratsiovytyi // Algebra and Discrete Mathematics. — 2016. — Vol. 22, № 1. — С. 102-115. — Бібліогр.: 25 назв. — англ.
1726-3255
2010 MSC:11H71, 26A46, 93B17.
https://nasplib.isofts.kiev.ua/handle/123456789/155748
In the paper, classes of continuous strictly increasing functions preserving ``tails'' of Δμ-representation of numbers are constructed. Using these functions we construct also continuous transformations of (0,1]. We prove that the set of all such transformations is infinite and forms non-commutative group together with an composition operation.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Transformations of (0,1] preserving tails of Δμ-representation of numbers
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Transformations of (0,1] preserving tails of Δμ-representation of numbers
spellingShingle Transformations of (0,1] preserving tails of Δμ-representation of numbers
Isaieva, T.M.
Pratsiovytyi, M.V.
title_short Transformations of (0,1] preserving tails of Δμ-representation of numbers
title_full Transformations of (0,1] preserving tails of Δμ-representation of numbers
title_fullStr Transformations of (0,1] preserving tails of Δμ-representation of numbers
title_full_unstemmed Transformations of (0,1] preserving tails of Δμ-representation of numbers
title_sort transformations of (0,1] preserving tails of δμ-representation of numbers
author Isaieva, T.M.
Pratsiovytyi, M.V.
author_facet Isaieva, T.M.
Pratsiovytyi, M.V.
publishDate 2016
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description In the paper, classes of continuous strictly increasing functions preserving ``tails'' of Δμ-representation of numbers are constructed. Using these functions we construct also continuous transformations of (0,1]. We prove that the set of all such transformations is infinite and forms non-commutative group together with an composition operation.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/155748
citation_txt Transformations of (0,1] preserving tails of Δμ-representation of numbers / T.M. Isaieva, M.V. Pratsiovytyi // Algebra and Discrete Mathematics. — 2016. — Vol. 22, № 1. — С. 102-115. — Бібліогр.: 25 назв. — англ.
work_keys_str_mv AT isaievatm transformationsof01preservingtailsofδμrepresentationofnumbers
AT pratsiovytyimv transformationsof01preservingtailsofδμrepresentationofnumbers
first_indexed 2025-12-07T17:06:11Z
last_indexed 2025-12-07T17:06:11Z
_version_ 1850869988569645056