On the discontinuity of the specific heat of the Ising model on a scale-free network

We consider the Ising model on an annealed scale-free network with node-degree distribution characterized by a power-law decay P(K)∼ K-λ. It is well established that the model is characterized by classical mean-field exponents for λ > 5. In this note we show that the specific-heat discontinuity δ...

Full description

Saved in:
Bibliographic Details
Published in:Condensed Matter Physics
Date:2015
Main Authors: Krasnytska, M., Berche, B., Holovatch, Yu., Kenna, R.
Format: Article
Language:English
Published: Інститут фізики конденсованих систем НАН України 2015
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/155799
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:On the discontinuity of the specific heat of the Ising model on a scale-free network / M. Krasnytska, B. Berche, Yu. Holovatch, R. Kenna // Condensed Matter Physics. — 2015. — Т. 18, № 4. — С. 44601: 1–4. — Бібліогр.: 20 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:We consider the Ising model on an annealed scale-free network with node-degree distribution characterized by a power-law decay P(K)∼ K-λ. It is well established that the model is characterized by classical mean-field exponents for λ > 5. In this note we show that the specific-heat discontinuity δc_h at the critical point remains λ-dependent even for λ > 5: δch=3(λ-5)(λ-1)/[2(λ-3)²] and attains its mean-field value δch=3/2 only in the limit λ → ∞. We compare this behaviour with recent measurements of the d dependency of δch made for the Ising model on lattices with d > 4 [Lundow P.H., Markström K., Nucl. Phys. B, 2015, 895, 305]. Ми розглядаємо модель Iзiнга на вiдпаленiй безмасштабнiй мережi зi степенево-спадною функцiєю розподiлу вузлiв P(K ) ∼ K −λ. Вiдомо, що ця модель описується класичними критичними показниками середнього поля при λ > 5. Тут ми покажемо, що стрибок теплоємностi δch при критичнiй температурi залишається λ-залежним навiть для λ > 5: δch = 3(λ−5)(λ−1)/[2(λ−3)² ] i досягає свого середньопольового значення δch = 3/2 тiльки в границi λ → ∞. Ми порiвнюємо цю поведiнку iз недавнiми результатами залежностi δch вiд d для моделi Iзiнга на гратках з d > 4 [Lundow P.H., Markstr¨om K., Nucl. Phys. B, 2015, 895, 305].
ISSN:1607-324X