A new way to construct 1-singular Gelfand-Tsetlin modules

We present a simplified way to construct the Gelfand-Tsetlin modules overgl(n,C) related to a 1-singular GT-tableau defined in [6]. We begin by reframing the classical construction of generic Gelfand-Tsetlin modules found in [3], showing that they form a flat family over generic points of C(n2). We...

Full description

Saved in:
Bibliographic Details
Published in:Algebra and Discrete Mathematics
Date:2017
Main Author: Zadunaisky, P.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2017
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/155911
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:A new way to construct 1-singular Gelfand-Tsetlin modules / P. Zadunaisky // Algebra and Discrete Mathematics. — 2017. — Vol. 23, № 1. — С. 180-193. — Бібліогр.: 20 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-155911
record_format dspace
spelling Zadunaisky, P.
2019-06-17T15:25:21Z
2019-06-17T15:25:21Z
2017
A new way to construct 1-singular Gelfand-Tsetlin modules / P. Zadunaisky // Algebra and Discrete Mathematics. — 2017. — Vol. 23, № 1. — С. 180-193. — Бібліогр.: 20 назв. — англ.
1726-3255
2010 MSC:17B10.
https://nasplib.isofts.kiev.ua/handle/123456789/155911
We present a simplified way to construct the Gelfand-Tsetlin modules overgl(n,C) related to a 1-singular GT-tableau defined in [6]. We begin by reframing the classical construction of generic Gelfand-Tsetlin modules found in [3], showing that they form a flat family over generic points of C(n2). We then show that this family can be extended to a flat family over a variety including generic points and 1-singular points for a fixed singular pair of entries. The 1-singular modules are precisely the fibers over these points
The author is a FAPESP PostDoc Fellow, grant: 2016-25984-1 São Paulo ResearchFoundation (FAPESP).
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
A new way to construct 1-singular Gelfand-Tsetlin modules
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title A new way to construct 1-singular Gelfand-Tsetlin modules
spellingShingle A new way to construct 1-singular Gelfand-Tsetlin modules
Zadunaisky, P.
title_short A new way to construct 1-singular Gelfand-Tsetlin modules
title_full A new way to construct 1-singular Gelfand-Tsetlin modules
title_fullStr A new way to construct 1-singular Gelfand-Tsetlin modules
title_full_unstemmed A new way to construct 1-singular Gelfand-Tsetlin modules
title_sort new way to construct 1-singular gelfand-tsetlin modules
author Zadunaisky, P.
author_facet Zadunaisky, P.
publishDate 2017
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description We present a simplified way to construct the Gelfand-Tsetlin modules overgl(n,C) related to a 1-singular GT-tableau defined in [6]. We begin by reframing the classical construction of generic Gelfand-Tsetlin modules found in [3], showing that they form a flat family over generic points of C(n2). We then show that this family can be extended to a flat family over a variety including generic points and 1-singular points for a fixed singular pair of entries. The 1-singular modules are precisely the fibers over these points
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/155911
citation_txt A new way to construct 1-singular Gelfand-Tsetlin modules / P. Zadunaisky // Algebra and Discrete Mathematics. — 2017. — Vol. 23, № 1. — С. 180-193. — Бібліогр.: 20 назв. — англ.
work_keys_str_mv AT zadunaiskyp anewwaytoconstruct1singulargelfandtsetlinmodules
AT zadunaiskyp newwaytoconstruct1singulargelfandtsetlinmodules
first_indexed 2025-12-07T16:40:20Z
last_indexed 2025-12-07T16:40:20Z
_version_ 1850868362768285696