Dg algebras with enough idempotents, their dg modules and their derived categories

We develop the theory dg algebras with enough idempotents and their dg modules and show their equivalence with that of small dg categories and their dg modules. We introduce the concept of dg adjunction and show that the classical covariant tensor-Hom and contravariant Hom-Hom adjunctions of modules...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and Discrete Mathematics
Datum:2017
1. Verfasser: Saorín, M.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2017
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/155937
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Dg algebras with enough idempotents, their dg modules and their derived categories / M. Saorín // Algebra and Discrete Mathematics. — 2017. — Vol. 23, № 1. — С. 62-137. — Бібліогр.: 25 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:We develop the theory dg algebras with enough idempotents and their dg modules and show their equivalence with that of small dg categories and their dg modules. We introduce the concept of dg adjunction and show that the classical covariant tensor-Hom and contravariant Hom-Hom adjunctions of modules over associative unital algebras are extended as dg adjunctions between categories of dg bimodules. The corresponding adjunctions of the associated triangulated functors are studied, and we investigate when they are one-sided parts of bifunctors which are triangulated on both variables. We finally show that, for a dg algebra with enough idempotents, the perfect left and right derived categories are dual to each other.
ISSN:1726-3255