Categories of lattices, and their global structure in terms of almost split sequences
A major part of Iyama’s characterization of Auslander-Reiten quivers of representation-finite orders Λ consists of an induction via rejective subcategories of Λ-lattices, which amounts to a resolution of Λ as an isolated singularity. Despite of its useful applications (proof of Solomon’s second...
Saved in:
| Published in: | Algebra and Discrete Mathematics |
|---|---|
| Date: | 2004 |
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Інститут прикладної математики і механіки НАН України
2004
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/155952 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Categories of lattices, and their global structure in terms of almost split sequences / W. Rump // Algebra and Discrete Mathematics. — 2004. — Vol. 3, № 1. — С. 87–111. — Бібліогр.: 30 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | A major part of Iyama’s characterization of
Auslander-Reiten quivers of representation-finite orders Λ consists
of an induction via rejective subcategories of Λ-lattices, which
amounts to a resolution of Λ as an isolated singularity. Despite
of its useful applications (proof of Solomon’s second conjecture
and the finiteness of representation dimension of any artinian algebra), rejective induction cannot be generalized to higher dimensional Cohen-Macaulay orders Λ. Our previous characterization
of finite Auslander-Reiten quivers of Λ in terms of additive functions [22] was proved by means of L-functors, but we still had to
rely on rejective induction. In the present article, this dependence
will be eliminated.
|
|---|---|
| ISSN: | 1726-3255 |