Categories of lattices, and their global structure in terms of almost split sequences

A major part of Iyama’s characterization of Auslander-Reiten quivers of representation-finite orders Λ consists of an induction via rejective subcategories of Λ-lattices, which amounts to a resolution of Λ as an isolated singularity. Despite of its useful applications (proof of Solomon’s second...

Full description

Saved in:
Bibliographic Details
Published in:Algebra and Discrete Mathematics
Date:2004
Main Author: Rump, W.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2004
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/155952
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Categories of lattices, and their global structure in terms of almost split sequences / W. Rump // Algebra and Discrete Mathematics. — 2004. — Vol. 3, № 1. — С. 87–111. — Бібліогр.: 30 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:A major part of Iyama’s characterization of Auslander-Reiten quivers of representation-finite orders Λ consists of an induction via rejective subcategories of Λ-lattices, which amounts to a resolution of Λ as an isolated singularity. Despite of its useful applications (proof of Solomon’s second conjecture and the finiteness of representation dimension of any artinian algebra), rejective induction cannot be generalized to higher dimensional Cohen-Macaulay orders Λ. Our previous characterization of finite Auslander-Reiten quivers of Λ in terms of additive functions [22] was proved by means of L-functors, but we still had to rely on rejective induction. In the present article, this dependence will be eliminated.
ISSN:1726-3255