A possible general mechanism of the signal transfer switching on the Α//3-interferons expression. 2. The role of the cAMP in the process of the interferon induction

The author carries out an analysis of available data concerning the participation of cyclic adenosine 3',5'-monophosphate (cAMP) in the signal transduction pathway on the α/β-inierferons (IFN) expression during the induction process. The cAMP is known to participate in the activation of pr...

Full description

Saved in:
Bibliographic Details
Published in:Биополимеры и клетка
Date:1999
Main Author: Karpov, A.V.
Format: Article
Language:English
Published: Інститут молекулярної біології і генетики НАН України 1999
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/156005
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:A possible general mechanism of the signal transfer switching on the Α//3-interferons expression. 2. The role of the cAMP in the process of the interferon induction / A.V. Karpov // Биополимеры и клетка. — 1999. — Т. 15, № 1. — С. 83-87. — Бібліогр.: 47 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-156005
record_format dspace
spelling Karpov, A.V.
2019-06-17T16:50:05Z
2019-06-17T16:50:05Z
1999
A possible general mechanism of the signal transfer switching on the Α//3-interferons expression. 2. The role of the cAMP in the process of the interferon induction / A.V. Karpov // Биополимеры и клетка. — 1999. — Т. 15, № 1. — С. 83-87. — Бібліогр.: 47 назв. — англ.
0233-7657
DOI: http://dx.doi.org/10.7124/bc.00050A
https://nasplib.isofts.kiev.ua/handle/123456789/156005
578.245.577.113.7
The author carries out an analysis of available data concerning the participation of cyclic adenosine 3',5'-monophosphate (cAMP) in the signal transduction pathway on the α/β-inierferons (IFN) expression during the induction process. The cAMP is known to participate in the activation of protein kinasev during the interferon induction as well as of nuclear factors activating specifically the regulating domains, of IFN genes. The cAMP is thought to be a secondary key messenger mediating the signal, for α/β-lFN induction, the first stage of this induction being the local cell membrane deformation caused by diffirent inducers.
Проаналізовано літературні дані стосовно участі циклічного аденозин-3' ,5'-монофосфату (cAMP) при передачі сигналу до експресії α/β-інтерферонів (ІФН) у процесі індукції. Описано участь сАМР в активації протеїнкіназ, які беруть участь в індукції, а також ядерних факторів, що специфічно активу­ють регуляторні домени генів ІФН. Висунуто припущення, що сAMP виступає в ролі ключового вторинного месепджера, який опосередковує сигнал до індукції α/β-ІФН, початковим етапом якого є специфічна деформація клітинної мембрани під дією різних індукторів.
Проанализированы литературные данные относительно уча­стия циклического аденозин-3',5-монофосфата (сAMP) при передаче сигнала к экспрессии α/β-интерферонов (ИФН) в процессе индукции. Описано участие сАМР в активации протеинкиназ, участвующих в индукции, а также ядерных факто­ров, специфически активирующих регуляторные домены генов ИФН. Выдвинуто предположение о том., что с AMP выступа­ет в роли ключевогом вторичного мессенджера, опосредующего сигнал к индукции α/β-ИФН, начальным этапом которого является специфическая деформация клеточной мембраны под воздействием различных индукторов.
en
Інститут молекулярної біології і генетики НАН України
Биополимеры и клетка
Дискуссии
A possible general mechanism of the signal transfer switching on the Α//3-interferons expression. 2. The role of the cAMP in the process of the interferon induction
Можливий універсальний механізм передачі сигналу до експресії α/β-інтерферонів, 2. Роль сАМР при індукції
Возможный универсальный механизм передачи сигнала к экспрессии α/β-интерферонов. 2. Роль сАМР при индукции
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title A possible general mechanism of the signal transfer switching on the Α//3-interferons expression. 2. The role of the cAMP in the process of the interferon induction
spellingShingle A possible general mechanism of the signal transfer switching on the Α//3-interferons expression. 2. The role of the cAMP in the process of the interferon induction
Karpov, A.V.
Дискуссии
title_short A possible general mechanism of the signal transfer switching on the Α//3-interferons expression. 2. The role of the cAMP in the process of the interferon induction
title_full A possible general mechanism of the signal transfer switching on the Α//3-interferons expression. 2. The role of the cAMP in the process of the interferon induction
title_fullStr A possible general mechanism of the signal transfer switching on the Α//3-interferons expression. 2. The role of the cAMP in the process of the interferon induction
title_full_unstemmed A possible general mechanism of the signal transfer switching on the Α//3-interferons expression. 2. The role of the cAMP in the process of the interferon induction
title_sort possible general mechanism of the signal transfer switching on the α//3-interferons expression. 2. the role of the camp in the process of the interferon induction
author Karpov, A.V.
author_facet Karpov, A.V.
topic Дискуссии
topic_facet Дискуссии
publishDate 1999
language English
container_title Биополимеры и клетка
publisher Інститут молекулярної біології і генетики НАН України
format Article
title_alt Можливий універсальний механізм передачі сигналу до експресії α/β-інтерферонів, 2. Роль сАМР при індукції
Возможный универсальный механизм передачи сигнала к экспрессии α/β-интерферонов. 2. Роль сАМР при индукции
description The author carries out an analysis of available data concerning the participation of cyclic adenosine 3',5'-monophosphate (cAMP) in the signal transduction pathway on the α/β-inierferons (IFN) expression during the induction process. The cAMP is known to participate in the activation of protein kinasev during the interferon induction as well as of nuclear factors activating specifically the regulating domains, of IFN genes. The cAMP is thought to be a secondary key messenger mediating the signal, for α/β-lFN induction, the first stage of this induction being the local cell membrane deformation caused by diffirent inducers. Проаналізовано літературні дані стосовно участі циклічного аденозин-3' ,5'-монофосфату (cAMP) при передачі сигналу до експресії α/β-інтерферонів (ІФН) у процесі індукції. Описано участь сАМР в активації протеїнкіназ, які беруть участь в індукції, а також ядерних факторів, що специфічно активу­ють регуляторні домени генів ІФН. Висунуто припущення, що сAMP виступає в ролі ключового вторинного месепджера, який опосередковує сигнал до індукції α/β-ІФН, початковим етапом якого є специфічна деформація клітинної мембрани під дією різних індукторів. Проанализированы литературные данные относительно уча­стия циклического аденозин-3',5-монофосфата (сAMP) при передаче сигнала к экспрессии α/β-интерферонов (ИФН) в процессе индукции. Описано участие сАМР в активации протеинкиназ, участвующих в индукции, а также ядерных факто­ров, специфически активирующих регуляторные домены генов ИФН. Выдвинуто предположение о том., что с AMP выступа­ет в роли ключевогом вторичного мессенджера, опосредующего сигнал к индукции α/β-ИФН, начальным этапом которого является специфическая деформация клеточной мембраны под воздействием различных индукторов.
issn 0233-7657
url https://nasplib.isofts.kiev.ua/handle/123456789/156005
citation_txt A possible general mechanism of the signal transfer switching on the Α//3-interferons expression. 2. The role of the cAMP in the process of the interferon induction / A.V. Karpov // Биополимеры и клетка. — 1999. — Т. 15, № 1. — С. 83-87. — Бібліогр.: 47 назв. — англ.
work_keys_str_mv AT karpovav apossiblegeneralmechanismofthesignaltransferswitchingontheα3interferonsexpression2theroleofthecampintheprocessoftheinterferoninduction
AT karpovav možliviiuníversalʹniimehanízmperedačísignaludoekspresííαβínterferonív2rolʹsamrpriíndukcíí
AT karpovav vozmožnyiuniversalʹnyimehanizmperedačisignalakékspressiiαβinterferonov2rolʹsamrpriindukcii
AT karpovav possiblegeneralmechanismofthesignaltransferswitchingontheα3interferonsexpression2theroleofthecampintheprocessoftheinterferoninduction
first_indexed 2025-11-25T16:07:39Z
last_indexed 2025-11-25T16:07:39Z
_version_ 1850517603338944512
fulltext ISSN 0233-7657. Биополимеры и клетка. 1999. Т. 15. Ns 1 ДИСКУССИИ A possible general mechanism of the signal transfer switching on the Α / / 3 - i n t e r f e r o n s expression. 2. The role of the cAMP in the process of the interferon induction Alexander V. Karpov Danylo Zabolotnoho Institute of Microbiology and Virology, National Academy of Sciences of Ukraine 1.54 Zaboiotny str., Kyiv, 252143, Ukraine The author carries out an analysis of available data concerning the participation of cyclic adenosine 3',5'-monophosphate (cAMP) in the signal transduction pathway on the a/β-interferons (IFN ) expression during the induction process. The cAMP is known to participate in the activation of protein kinases during the interferon induction as well as of nuclear factors activating specifically the regulating domains of IFN genes. The cAMP is thought to be a secondary key messenger mediating the signal for α/β-IFN induction, the first stage of this induction being the local cell membrane deformation caused by diffirent inducers. The regulation of the interferon (IFN) genes ex- pression as well as the expression of a lot of other ones is usually realized by the induction mechanism, i. e. by the extracellular activation [1]. The IFN induction is now known to be realized both by viruses and by many compounds of high and low molecular weight [I—4]. The induction process is thought to be a multi-stage and perhaps a branched one beginning from any inductor interaction with the cell surface and completing by the initiation of the JFN genes transcription. It must be noted that no generally accepted up-to-date conception has been elaborated concerning the IFN induction mechanism as well the nature of intermediate signal carriers assuring the IFN-ccding genes activation following the action of multilateral inducers. A great body of experimental data accumulated during several last years shows the genes coding both and a- and /Ї-IFN to contain multiple positive and negative as-acting elements necessary for induction. These elements are mostly able to bind with different protein factors also influencing the transcription [5, © Α. V. KARPOV, 1999 6 |. It is also noteworthy the activation of both a - and Д-IFN genes needs no new protein synthesis. So it is clear the cell to possess some «latent» («silent») factors necessary for the effective IFN genes expres- sion, these factors being activated by the induction process [6, 7 J. I have earlier proposed a hypolhesis postulating the first a- and /S-IFN induction stage to be a rather common phenomenon — the local cellular membrane deformation taking place as a result of any IFN- inducing agent action [8 ]. In this paper I would like to discuss some possible events on the level of molecular processes developing after such membrane deformation. The interaction of some biologically active sub- stances with the cellular membrane as well as some other processes cause the activation of many enzymes including also adenylate cyclase — an enzyme res- ponsible for the cyclic adenosine-3',5'-monopho:>phate (cAMP) synthesis. Due to such activation the intra- cellular cAMP level increases [9]. A similar pheno- menon is also found following local artificial mecha- nical effect on the cell membrane [10—12], The cAMP is known to belong Io a group of so called «secondary messengers» — ubiquitous intracellular 83 KARfOV Α. V. substances activating a lot of genes [13], hormones [14], and also protein factors regulating the exp- ression of many genes [15]. The transcription ini- tiation is realized due to the activation of a specific cAMP-dependent protein kinase — protein kinase A (PKA) activating a corresponding transcription factor [16] by a phosphorylation process. The inactive PKA holoenzyme consists of two regulatory subunits pos- sessing two cAMP-binding sites and two catalytic ones. There are two types of regulatory subunits, the catalytic ones being identical. The binding of four cAMP molecules to regulatory subunits causes the release of catalytic monomer subunits pliosphorylating cell proteins. The participation of different protein kinases including also the cAMP-deperident one in the IFN induction process is known for a rather long time [17]. Tv/o inter-independent types of transductive lFN-activating signals are now thought to be set in motion following extracellular stimulus. Protein kina- ses are found to participate directly in the signal development of both types. The first IFN-activating process needs the Ca2i-Calmodulin system partici- pation, the second one includes the activity of the Ca"'-dependent diacylglycerol protein kinase C [18]. Some experiments with different inhibitors of this enzyme have shown the poly (I) -poly (C)-induced IFN synthesis, contrary to the virus-induced one, is de- pendent on this enzyme activity [19]. The inhibition of the dsRNA- and virus-induced /J-IFN synthesis by 2-aminopurine proves the role of the dsRNA-clepend- cnt protein Idnase in the /?-IFN induction. This anomalous nucleoside is found to be a potential inhibitor of some protein kinases including also dsRNA-dependent and heme-reguiated protein kinase eIF-2 [20, 21 ]. The data given above confirm the importance and significance of this type enzymes in he IFN induction. The cAMP participation in this process, except its direct role in the PKA activation discussed above, includes also several stages of the protein ldnases mediated signal transfer which is impossible without the cAMP. For example, this secondary messenger has been demonstrated to sti mulate the PKC penetration into the nucleus [22 ]. At the same time the cAMP increases the activity of ionic channels permitting Ca2+-Ions introduction into the cell followed by the PKC activation [23]. In its turn, this process is also known to be negatively regulated, an adenylate cyclase subunit being inactivated by the PKC [24 ] and the intracellular Ca2+-excess leading t he cAMP-spliitting phosphodiesterase activation [25]. The addition of the PKA activating cAMP analogs decreases the cAMP level in hepatocytes [26 ]. All Ihese data suggest the existence of numerous negative feed back regulation pathways in the system of secondary messengers; the negative regulation is tho- ught to prevent the excessive cell stimulation. I think such regulation is to play the determinative crucial role for the choice of any signal transduction pathway necessary for the IFN induction in any concrete case of interactions between any IFN inducer and the cell. My conception correlates completely with the conclu- sion concerning any concrete case of the secondary messengers participation in the IFN synthesis follo- wed by viral and non-viral IFN induction [19]. To discuss the cAMP role at the final stages of the IFN genes expression, it is necessary to remem- ber some experimental results. PRDIV, one of the four positive /S-IFN regulatory elements, contains a site binding transcription factors of the ATF/CREB family [27—29], the CPEB factor assuring the cAMP-dependen t induct ion [30]. The multiple PRDIV copies have been also demonstrated to realize both virus- and cAMP-dependent IFN induction with heterologous promoters [29]. At the same time the cAMP has been shown to participate in the virus-directed IFN gene induction which is dependent on PRDII, another positive regu- lating domain of this gene promoter [31 ]. Such induction is usually realized with the help of a specific nuclear protein — NF-лВ. This protein has been shown to bind the лВ-site of the A-chain (NF-κΒ) in the immunoglobulin enhancer [32, 33 ]. The NF-лВ is demonstrated to be present in the cytoplasm of many cells forming a complex with an inhibitor protein, IKB [34]. The cell treatment by several agents, such as phorbol ethers, lypopolysaccharides, and cAMP, the last case being especially noteworthy, causes the dissociation of the NFWCB/IKB complex and the development of a nuclear NF-A'B-binding activity [35]. Besides, some in vitro experiments suggest the activation of a NF-л'В precursor followed by its conversion into an active DNA-binding form is rea- lized with the participation both of the PKC and the cAMP dependent PKA [36]. The NF-AB is found to bind specifically the PRDII site of the /S-IFN promoter, the PRDlI muta- tions decreasing the virus-directed IFN induction in vivo reduce also the NF-κΒ affinity to the PRDII in vitro [37, 38 ]. It is noteworthy the NF-/cB binding and its transfer to the nucleus are activated both by viruses and by poly (I)-poly (C) preparations [31, 37—39]. The NF-κΒ is also known to activate the PKC and the heme-regulated kinase eIF-2 as well as the cAMP-dependent PKA. At the same time, the LcB is demonstrated to become phosphorylated and inac- tivated in the presence of the PKC and of the elF-kinase, but not in the presence of the PKA [35 ]. 84 All these data including especially the very fact of the cAMP-mediated α/β-lFN induction [5 | as well as the experiments suggesting the intracellular cAMP concentration increasing directed by the dsRNA [401 and synthetic nucleotides [41 [ prove the cAMP being the secondary messenger to make the principal contri- bution into the developing of several signal transfer pathways leading from the cellular membrane to the α/β-lFN coding genes activation. Besides, I would like to discuss a problem of the cAMP-mediated signal; I think this term to concern not only the α/β-lFN expression, but also the exp- ression of many other genes activated following the virus/dsRNAs interactions with any cell [42 ]. It i.; noteworthy a similar situation is found following any mechanical deformation of the cell membrane [11, 12]. Unfortunately, the data concerning this last case have been never discussed in connection with the IFN induction. At the same time, any similar cAMP-mediated signal is to be a rather specific one, the IFN induction process being found to take place following the suppression of the general cellular protein synthesis [1—4]. This process specificity is possible to be due to two additional ones. Firstly, the cAMP together with a lot of cAMP-dependent kinases and some other proteins is now thought to form a rather complex coordinated system of secondary messengers pos- sessing several entries for extracellular signals and having numerous feed back factors [25 ]. Such system is able to adapt its possibilities for any concrete case to realize such a general cell response as the IFN induction. Secondly, some cAMP-independent factors have been also shown to regulate the INF synthesis [5 ]. The additive action of all these factors parti- cipating in the IFN induction is to increase the specificity level. During a rather long time some synthetic poly- nucleotides belonging to an important group of IFN- inducing substances are known to be compounds stimulating the synthesis of antibodies. Such a stri- king property of such compounds is thought to be correlated with their ability to increase the adenylate cyclase activity in immunocompetent cells followed by the increased intracellular cAMP concentration [43]. The accelerated immune response has been demon- strated not only as a result of polynucleotide-induced increasing of the adenylate cyclase activity, but also as a consequence of the phosphodiesterase inhibitors effect, such as theophilline and caffeine [44]. It is clear such immune responses to be correlated with or directly due to the IFN-inducing activity. There are direct evidences that such compounds as methyl- xanthines (purines) and a lot of their derivatives A MECHANISM OF THE SIGNAL ON THE INTERFERON EX PRESSION including theophilline and caffeine mentioned above as well as theobromine, papaverine and some other ones are also cAMP phosphodiesterase inhibitors [45, 46 ] possessing some marked IFN-inducing properties [47]. At the same time I think the direct IFN- inducing cytotropic effect of the cAMP is not a probable one, this compound being inable to penetrate through the cell membrane [13]. I think all these data permit to assume the cAMP to be the crucial factor participating in 1he IFN- inducing signal transfer developed earlier according to the postulated mechanism due to the specific cell membrane deformation [8 ]. Such a situation does not exclude the synergistic contribution of some other IFN-inducing factors leading finally to the process of the genes expression coding the I type IFN (i. e. α/β-lFN). So I think the further investigations con- cerning all the details of the IFN regulation and IFN expression mentioned above will disclose the picture of the cAMP participation in this process as well as some variations concerning this compound concen- trations at different IFN induction stages; these data are to be of great value and to help us to solve the general problem of the IFN induction. The expe- riments with many different inducers and inhibitors of the IFN synthesis participating in the cAMP metabolism are to be especially useful. О. В. Карпов Можливий універсальний механізм передачі сигналу до експресії «//{-інтерферонів. 2. Роль сАМР при індукції Резюме Проаналізовано літературні дані стосовно участі циклічного аденозин-3',.5'-монофосфату (cAMP) при передачі сигналу до експресії а/β-інтерферонів (ІФН) у процесі індукції. Описано участь сАМР в активації протеїнкіназ, які беруть участь в індукції, а також ядерних факторів, що специфічно активу- ють регуляторні домени генів ІФН. Висунуто припущення, що сАМР виступає в ролі ключового вторинного месенджера, який опосередковує сигнал до індукції α/β-ΙΦΗ, початковим етапом якого є специфічна деформація клітинної мембрани під дією різних індукторів. А. В. Карпов Возможный универсальный механизм передачи сигнала к экспрессии а//?-интерферонов. 2. Роль сАМР при индукции Резюме Проанализированы литературные данные относительно уча- стия циклического аденозин-3',5'-моно(росфапш (сАМР) при передаче сигнала к экспрессии α/β-интерферонов (ИФН) в процессе индукции. Описано участие сАМР в активации чроте- инкиназ, участвующих в индукціш, а также ядерных факто- ров, специфически активирующих регуляторные домены генов ИФН. Выдвинуто предіюложение о том, что сАМР выступа- ет в роли ключсвогом вторичного мессенджера, опосредующе- 85 KARFOV А V. го сигнал к индукции α/β-ИФН, начальным .этапом которого является специфическая деформация клеточной мембраны под воздействием различных индукторов. REFERENCES 1. Н о М. Induction and inducers of interferon / / Interferon 1. General and applied aspects / Ed. A. Billiau.—Amsterdam; New York; Oxford: Elsevier, 1984.—P. 79—124 . 2. Marcus P. / . Interferon induclion by viruses: double-stranded ribonucleic acid as the common proximal inducer molecule / / Interferon 3. Mechanisms of production and action / Ed. R. M. Friedman.—Amsterdam; New York; Oxford: Elsevier, 1984.— P. 113—175. 3. Stringfellow D. A. Induction of interferon with low molecular weight compounds / / Meth. Enzymol .—1981.—78.—P. 262— 284 4. Torrence P. T., De Clercq E. Interferon induction by nucleic acids: structure-activity relationships / / Interferon and their applications / Eds P. E. Came, W. A. Carter.—Berlin: Springer, 1984.—P. 371—383 . 5. Maniatis T., Whittemore L. A., Du W. et al. Positive and negative control of human interferon-/} gene expression / / Transcriptional regulation / Eds S. L. McKnight, K. R Yamamoto.—New York: Cold Spring Harbor Lab. press, 1992 —P. 1193—1220. 6 Taniguchi T. Regulation of cytokine gene expression / / Annu. Rev. Immunol.—1988.—6.—P. 439—464 7 Goodhourn S., Maniatis T. Overlapping positive and negative regulatory domains of the human /J-interferon gene / / Proc. Nat. Acad. Sci. U S A . — 1 9 8 8 . — 8 5 . — P . 1447—1451 8 Karpov Α. V. A possible genrral mechanism of the signal transfer switching on the α/β-interferons expression. 1. The local cell membrane deforma tion as the fir,it induction stage / / Биополимеры и клетка.—1998.—14, № 6.—С. 561—566. 9 Бужуршш И. M., Панов М. А. Механизмы формирования клеточного ответа на внешние воздействия / / Общ. пробл. физ.-хим. биологии.—M.: ВИНИТИ, 1986,—С. 1—258 (Итоги науки и техники, Т. 3) . 10 Watson P. A. Direct stimulation of adenylat cyclase by mechanical forces in S49 mouse Iymphomi cell during hypos- motic swelling / / J. Biol. C h e m . - 1 9 9 0 —265 .—P. 6569— 6574. 11. Olsen S-P., Clapham D. E., Davies P. E. Haemodynamic shear stress activates a K+ current in vascular endothelial cell / / Nature.—1988 — 3 3 1 . — P . 168—170. 12. Wang N., Butler J. P., Ingber D. E. Mechanotransduction across the cell surface and through the cytoskeleton / / Sc ience .—1993.—260.—P. 1 1 2 4 - 1127. 13. Преображенская Η. П., Юркевич Α. Μ. Современные представления о роли цикло-АМФ как регулятора актив- ности ферментов / / Bonp мед. х и м и и , — 1 9 7 3 . — 1 9 , № 5 .— С. 451—462. 14. Sutherland E.. W. Studies on the mechanism of hormone action / / Sc ience .—1972.—177.—P. 401—408 . 15. Comb M., Bimberg N. C., Seascholtz A. et aL A cyclic-AMP and phorbol ester-inducible DNA element / / Nature.—1986.— 323.—P. 353—356. 16. Gonzales G. A., Yamamoto K. K., Fischer W. H. et al. A cluster of phosphorylation sites on the cyclic AMP-regulated nuclear factor CREiB predicted by its sequence / / Ibid.— 1989.—337.—P. 749—752,. 17. Neldolesi M. F., Friedman R. M., Kohn L· D. An interferon- induced increase in cyclic AidP levels precedes the estab- lishment of the antiviral state / / Biochera and Biophys. Res. Communs.—1977.—79.—P. 239—243 . 18. Nishizuka Y. Turnover of Inositol phospholipids and signal transduction / / Sc ience .—1984.—225.—P. 1365—1370. 19. Thacore H. R., Lin H.-Y., Davis P. /., Schoenl M. Effect of protein kinase C inhibitors on interferon-/? production by viral and non-viral inducers / / J. Gen. Virol .—1990.—71.— P. 2833—2839 . 20. Marcus P. I., Sekellick Μ. I. Interferon induction by viruses. XVI. 2-Ammopurine blocks selectively and reversibly an early stage in interferon induction / / Ibid.—1988.—69.—P. 1637— 1645. 21. Zinn K., Keller A., Whittemore L-A., Maniatis T. 2-Ami- nopurine. selectively inhibits the induction of /(-interferon, c-fos and c-myc gene expression / / Sc ience .—1988.—240,— P. 210—213. 22. Cambier J. C., Newell M. K, Justement L B. et aL Ia binding ligands and cAMP stimulate nuclear translocation of PKC ir. B lymphocytes / / Nature .—1987.—327,—P. 629—632. 23. Cachelin A. B., de Peyer J. E., Kokubun S., Reuter II Ca-'" channel modulation by 8-bromocyclic AMP in cultured heart cells / / Ibid.—1983 —304 ,— P. 462—464. 24. Katada T., Gilman A. G., Watanabe Y. et al. Protein kinase C phosphorylates the inhibitory guanine-nucleotide-binding regi Iatory component and apparently suppresses its function in hormonal inhibition of adenylat cyclase / / Eur. J. Biochem.— 1985. —151 —P. 431—437. 25. Романчиков Ю. Μ. Факторы роста, вторичные мессен джеры и онкогены / / Успехи соврем, биологии. —1991.— 111, № 1.—С. 19—33. 26. Corbin J. D., Beebe S. J., Blackmore P. F. cAMP-dependent protein kinase activation lowers hepatocyte cAMP / / J. Bioi. C h e m . - 1 9 8 5 . — 2 6 0 . — P . 8731—8735. 27. Hai T., Fang L, Alegretto A. et al. A family of immunologi- cally related transcription factors that incluaes multiple forms of ATF and AP-I / / Genes Dev .—1988 .—2,—P 1216— 1226. 28. Hai T., Fang L, Coukas W. J., Green M. R. Transcription factor ATF cDNA clones: An extensive famiiy of leucine zipper proteins able to selectively form DNA-binding heterodimers / / Ibid .—1989.—3.—P. 2083—2090. 29. Du W., Maniatis T. An ATF/CREB element is required for virus induction of the human interferon-/? gene / / Proc. Na·. Acad. Sci. USA.—1992 ,—89 ,—P. 2150—2154. 30. Liu F., Green M. R. A specific member of the ATF transcrip tion factor family can mediate transcription activating by the adenovirus E la protein / / Cel l .—1990.—61.—P. 1217— 1224. 31. Hiscott J., Atper D., Cohen L et al. Induction of human interferon gene expression is associated with a nuclear factor that interacts with the NF-κΒ site of the human immuno- deficiency virus enhancer / / J. Virol .—1989,—63.—P. 2557— 2566. 32. Sen R., Baltimore D. Multiple nuclear factors interac" with Itie immunoglobulin enhancer sequences / / Cell. —1986.—46 — P. 705—716. 33. Sen R., Baltimore D. Inducibility of к immunoglobulin enhan- cer-binding protein NF-/cB by a post-translational mechanism / / Ibid —47.—P. 921—928. 34. Baeuerle A. S., Baltimore D. A 65 kD subunit of active NF-кй is required for inhibition of NF-κΒ by IKB / / Genes Dev.— 1989,—3.—P. 1689—1698. 35. Ghosh S., Baltimore D. Activation in vitro of NF-κΒ by phosphorylation of its inhibitor IkB I l Nature.—1990.—344.— P. 678—682. 36. Shirakawa F., Mizel S. B. In vitro activation and nuclear translocation of NF-/cB catalized by cyclic AMP-dependem 86 A MECHANISM OF THE SIGNAL ON THE INTERFERON EX PRESSION protein kinase and protein kinase C / / Мої. Cell Biol.— 1989.—9.—P. 2424—2430. 37. Lenardo M. J., Fan C.-M., Maniatis T., Baltimore D. The involvement of NF-лгВ in ^-interferon gene regulation reveals its role as a widely inducible mediator of signal transduction / / Cell .—1989.—57.—P. 287—294. 38. Visvanathan К V., Goodbourn S. Double-stranded RNA activates binding of NF-лгВ to an inducible element in human /J-interferon promoter / / EMBO J.—1989,—8.—P. 1129— 1138. 39. Fujita T., Kimura Y., Miyamoto M. et al. Induction of endogenous IFN-α and IFN-/J genes by a regulatory transcrip- tion factor, IRF-I / / Nature.—1989,—337.—P. 270—272. 40. Галет ян Г. Г., Мхитарян F. С., Гаспарян Н. Т. и др. Влияние дсРНК на содержание циклических нуклеотидов в различных тканях эукариот / / Журн. эксперим. и KjtHH. медицины.—1989.—29, № 5.—С. 477—482. 41. Земское В. М. Синтетические полинуклеотиды как неспе- цифические стимуляторы иммунологической системы ор- ганизма / / Успехи соврем, биологии.—1973.—76, № 1.— С. 3—20. 42. Wathelet М. G., Berr P. M., Huez Р. М. Regulation of gene expression by cytokines and virus in human cells lacking the type-1 interferon locus / / Eur. J. Blochem.-1992.—206 — P. 901—910. 43. Winchurch R., Ishizuka M., Webb D., Braun W. Adenyl cyclase activity of spleen cells exposed to immunoeirihancing synthetic oligo- and polynucleotides / / J. Immunol.—1971 — 1 0 6 — P. 1399—1402. 44. Brawn W., Ishizuka M. Cyclic AMP and immune responses. II. Phospliiodiesterase inhibitors as potentiators of polynucleotide effects on antibody formation / / Ibid —107.—P. 1036—1042. 45. Bucher R. W., Sutherland E. H·'. Adenosine 3',5'-phosphate in biological materials. I. Purification and properties of cyclic 3',5'-n jeleotide phosphodiesterase and use of this enzyme to characlerize adenosine 3',5'-phosphate In human urine / / J. Biol. C h e m . - 1 9 6 2 , — 2 3 7 . — P . 1244—1247. 46. Triner L, Vulliemaz Y., Schwartz /., Nahas C. G. Cyclic phosphodiesterase activity and the action of papaverine / / Biochem. and Biophys. Res. Communs.—1970.—40.—P. 64— 67. 47. Григорян С. С., Поверенный A. M., Ершов Φ. И. Вазо- дилетагоры как индукторы интерферона / / Вопр. виру- сологии,— 1987.— 32," № 2.—С. 204—208. УДК 578.245.577.113.7 Received 27.11.97 87