A survey article on some subgroup embeddings and local properties for soluble PST-groups
Let G be a group and p a prime number. G is said to be a Yp-group if whenever K is a p-subgroup of G then every subgroup of K is an S-permutable subgroup in NG(K). The group G is a soluble PST-group if and only if G is a Yp-group for all primes p. One of our purposes here is to define a number of...
Збережено в:
| Опубліковано в: : | Algebra and Discrete Mathematics |
|---|---|
| Дата: | 2017 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2017
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/156021 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | A survey article on some subgroup embeddings and local properties for soluble PST-groups / J.C. Beidleman // Algebra and Discrete Mathematics. — 2017. — Vol. 23, № 2. — С. 197-203. — Бібліогр.: 20 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | Let G be a group and p a prime number. G is said to be a Yp-group if whenever K is a p-subgroup of G then every subgroup of K is an S-permutable subgroup in NG(K). The group G is a soluble PST-group if and only if G is a Yp-group for all primes p.
One of our purposes here is to define a number of local properties related to Yp which lead to several new characterizations of soluble PST-groups. Another purpose is to define several embedding subgroup properties which yield some new classes of soluble PST-groups. Such properties include weakly S-permutable subgroup, weakly semipermutable subgroup, and weakly seminormal subgroup.
|
|---|---|
| ISSN: | 1726-3255 |