On recurrence in G-spaces
We introduce and analyze the following general concept of recurrence. Let G be a group and let X be a G-space with the action G×X⟶X, (g,x)⟼gx. For a family F of subset of X and A∈F, we denote ΔF(A)={g∈G:gB⊆A for some B∈F, B⊆A}, and say that a subset R of G is F-recurrent if R⋂ΔF(A)≠∅ for each A∈F....
Saved in:
| Published in: | Algebra and Discrete Mathematics |
|---|---|
| Date: | 2017 |
| Main Authors: | Protasov, I.V., Protasova, K.D. |
| Format: | Article |
| Language: | English |
| Published: |
Інститут прикладної математики і механіки НАН України
2017
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/156022 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | On recurrence in G-spaces / I.V. Protasov, K.D. Protasova // Algebra and Discrete Mathematics. — 2017. — Vol. 23, № 2. — С. 279-284. — Бібліогр.: 6 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of UkraineSimilar Items
-
On recurrence in G-spaces
by: I. Protasov, et al.
Published: (2017) -
On recurrence in \(G\)-spaces
by: Protasov, Igor V., et al.
Published: (2017) -
Balleans of bounded geometry and G-spaces
by: Protasov, I.V.
Published: (2008) -
Ultrafilters on G-spaces
by: Petrenko, O.V., et al.
Published: (2015) -
Balleans and G-spaces
by: Petrenko, O.V., et al.
Published: (2012)