A note on Hall S-permutably embedded subgroups of finite groups
Let G be a finite group. Recall that a subgroup A of G is said to permute with a subgroup B if AB=BA. A subgroup A of G is said to be S-quasinormal or S-permutable in G if A permutes with all Sylow subgroups of G. Recall also that HsG is the S-permutable closure of H in G, that is, the intersect...
Gespeichert in:
| Veröffentlicht in: | Algebra and Discrete Mathematics |
|---|---|
| Datum: | 2017 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2017
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/156024 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | A note on Hall S-permutably embedded subgroups of finite groups / D. Sinitsa // Algebra and Discrete Mathematics. — 2017. — Vol. 23, № 2. — С. 305-311. — Бібліогр.: 9 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-156024 |
|---|---|
| record_format |
dspace |
| spelling |
Sinitsa, D. 2019-06-17T18:59:06Z 2019-06-17T18:59:06Z 2017 A note on Hall S-permutably embedded subgroups of finite groups / D. Sinitsa // Algebra and Discrete Mathematics. — 2017. — Vol. 23, № 2. — С. 305-311. — Бібліогр.: 9 назв. — англ. 1726-3255 2010 MSC:20D10, 20D15, 20D30. https://nasplib.isofts.kiev.ua/handle/123456789/156024 Let G be a finite group. Recall that a subgroup A of G is said to permute with a subgroup B if AB=BA. A subgroup A of G is said to be S-quasinormal or S-permutable in G if A permutes with all Sylow subgroups of G. Recall also that HsG is the S-permutable closure of H in G, that is, the intersection of all such S-permutable subgroups of G which contain H. We say that H is Hall S-permutably embedded in G if H is a Hall subgroup of the S-permutable closure HsG of H in G. We prove that the following conditions are equivalent: (1) every subgroup of G is Hall S-permutably embedded in G; (2) the nilpotent residual GN of G is a Hall cyclic of square-free order subgroup of G; (3) G=D⋊M is a split extension of a cyclic subgroup D of square-free order by a nilpotent group M, where M and D are both Hall subgroups of G. The author is very grateful for the helpful suggestions and remarks of the referee. en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics A note on Hall S-permutably embedded subgroups of finite groups Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
A note on Hall S-permutably embedded subgroups of finite groups |
| spellingShingle |
A note on Hall S-permutably embedded subgroups of finite groups Sinitsa, D. |
| title_short |
A note on Hall S-permutably embedded subgroups of finite groups |
| title_full |
A note on Hall S-permutably embedded subgroups of finite groups |
| title_fullStr |
A note on Hall S-permutably embedded subgroups of finite groups |
| title_full_unstemmed |
A note on Hall S-permutably embedded subgroups of finite groups |
| title_sort |
note on hall s-permutably embedded subgroups of finite groups |
| author |
Sinitsa, D. |
| author_facet |
Sinitsa, D. |
| publishDate |
2017 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
Let G be a finite group. Recall that a subgroup A of G is said to permute with a subgroup B if AB=BA. A subgroup A of G is said to be S-quasinormal or S-permutable in G if A permutes with all Sylow subgroups of G. Recall also that HsG is the S-permutable closure of H in G, that is, the intersection of all such S-permutable subgroups of G which contain H. We say that H is Hall S-permutably embedded in G if H is a Hall subgroup of the S-permutable closure HsG of H in G. We prove that the following conditions are equivalent: (1) every subgroup of G is Hall S-permutably embedded in G; (2) the nilpotent residual GN of G is a Hall cyclic of square-free order subgroup of G; (3) G=D⋊M is a split extension of a cyclic subgroup D of square-free order by a nilpotent group M, where M and D are both Hall subgroups of G.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/156024 |
| citation_txt |
A note on Hall S-permutably embedded subgroups of finite groups / D. Sinitsa // Algebra and Discrete Mathematics. — 2017. — Vol. 23, № 2. — С. 305-311. — Бібліогр.: 9 назв. — англ. |
| work_keys_str_mv |
AT sinitsad anoteonhallspermutablyembeddedsubgroupsoffinitegroups AT sinitsad noteonhallspermutablyembeddedsubgroupsoffinitegroups |
| first_indexed |
2025-12-07T16:29:58Z |
| last_indexed |
2025-12-07T16:29:58Z |
| _version_ |
1850867710794137600 |