A note on Hall S-permutably embedded subgroups of finite groups

Let G be a finite group. Recall that a subgroup A of G is said to permute with a subgroup B if AB=BA. A subgroup A of G is said to be S-quasinormal or S-permutable in G if A permutes with all Sylow subgroups of G. Recall also that HsG is the S-permutable closure of H in G, that is, the intersect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and Discrete Mathematics
Datum:2017
1. Verfasser: Sinitsa, D.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2017
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/156024
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:A note on Hall S-permutably embedded subgroups of finite groups / D. Sinitsa // Algebra and Discrete Mathematics. — 2017. — Vol. 23, № 2. — С. 305-311. — Бібліогр.: 9 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-156024
record_format dspace
spelling Sinitsa, D.
2019-06-17T18:59:06Z
2019-06-17T18:59:06Z
2017
A note on Hall S-permutably embedded subgroups of finite groups / D. Sinitsa // Algebra and Discrete Mathematics. — 2017. — Vol. 23, № 2. — С. 305-311. — Бібліогр.: 9 назв. — англ.
1726-3255
2010 MSC:20D10, 20D15, 20D30.
https://nasplib.isofts.kiev.ua/handle/123456789/156024
Let G be a finite group. Recall that a subgroup A of G is said to permute with a subgroup B if AB=BA. A subgroup A of G is said to be S-quasinormal or S-permutable in G if A permutes with all Sylow subgroups of G. Recall also that HsG is the S-permutable closure of H in G, that is, the intersection of all such S-permutable subgroups of G which contain H. We say that H is Hall S-permutably embedded in G if H is a Hall subgroup of the S-permutable closure HsG of H in G. We prove that the following conditions are equivalent: (1) every subgroup of G is Hall S-permutably embedded in G; (2) the nilpotent residual GN of G is a Hall cyclic of square-free order subgroup of G; (3) G=D⋊M is a split extension of a cyclic subgroup D of square-free order by a nilpotent group M, where M and D are both Hall subgroups of G.
The author is very grateful for the helpful suggestions and remarks of the referee.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
A note on Hall S-permutably embedded subgroups of finite groups
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title A note on Hall S-permutably embedded subgroups of finite groups
spellingShingle A note on Hall S-permutably embedded subgroups of finite groups
Sinitsa, D.
title_short A note on Hall S-permutably embedded subgroups of finite groups
title_full A note on Hall S-permutably embedded subgroups of finite groups
title_fullStr A note on Hall S-permutably embedded subgroups of finite groups
title_full_unstemmed A note on Hall S-permutably embedded subgroups of finite groups
title_sort note on hall s-permutably embedded subgroups of finite groups
author Sinitsa, D.
author_facet Sinitsa, D.
publishDate 2017
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description Let G be a finite group. Recall that a subgroup A of G is said to permute with a subgroup B if AB=BA. A subgroup A of G is said to be S-quasinormal or S-permutable in G if A permutes with all Sylow subgroups of G. Recall also that HsG is the S-permutable closure of H in G, that is, the intersection of all such S-permutable subgroups of G which contain H. We say that H is Hall S-permutably embedded in G if H is a Hall subgroup of the S-permutable closure HsG of H in G. We prove that the following conditions are equivalent: (1) every subgroup of G is Hall S-permutably embedded in G; (2) the nilpotent residual GN of G is a Hall cyclic of square-free order subgroup of G; (3) G=D⋊M is a split extension of a cyclic subgroup D of square-free order by a nilpotent group M, where M and D are both Hall subgroups of G.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/156024
citation_txt A note on Hall S-permutably embedded subgroups of finite groups / D. Sinitsa // Algebra and Discrete Mathematics. — 2017. — Vol. 23, № 2. — С. 305-311. — Бібліогр.: 9 назв. — англ.
work_keys_str_mv AT sinitsad anoteonhallspermutablyembeddedsubgroupsoffinitegroups
AT sinitsad noteonhallspermutablyembeddedsubgroupsoffinitegroups
first_indexed 2025-12-07T16:29:58Z
last_indexed 2025-12-07T16:29:58Z
_version_ 1850867710794137600