Generators and ranks in finite partial transformation semigroups

We extend the concept of path-cycle, to the semigroup Pn, of all partial maps on Xn={1,2,…,n}, and show that the classical decomposition of permutations into disjoint cycles can be extended to elements of Pn by means of path-cycles. The device is used to obtain information about generating sets for...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Algebra and Discrete Mathematics
Дата:2017
Автори: Garba, G.U., Imam, A.T.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2017
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/156026
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Generators and ranks in finite partial transformation semigroups / G.U. Garba, A.T. Imam // Algebra and Discrete Mathematics. — 2017. — Vol. 23, № 2. — С. 237-248. — Бібліогр.: 16 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-156026
record_format dspace
spelling Garba, G.U.
Imam, A.T.
2019-06-17T19:02:47Z
2019-06-17T19:02:47Z
2017
Generators and ranks in finite partial transformation semigroups / G.U. Garba, A.T. Imam // Algebra and Discrete Mathematics. — 2017. — Vol. 23, № 2. — С. 237-248. — Бібліогр.: 16 назв. — англ.
1726-3255
2010 MSC:20M20.
https://nasplib.isofts.kiev.ua/handle/123456789/156026
We extend the concept of path-cycle, to the semigroup Pn, of all partial maps on Xn={1,2,…,n}, and show that the classical decomposition of permutations into disjoint cycles can be extended to elements of Pn by means of path-cycles. The device is used to obtain information about generating sets for the semigroup Pn\Sn, of all singular partial maps of Xn. Moreover, we give a definition for the (m,r)-rank of Pn\Sn and show that it is n(n+1)/2.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Generators and ranks in finite partial transformation semigroups
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Generators and ranks in finite partial transformation semigroups
spellingShingle Generators and ranks in finite partial transformation semigroups
Garba, G.U.
Imam, A.T.
title_short Generators and ranks in finite partial transformation semigroups
title_full Generators and ranks in finite partial transformation semigroups
title_fullStr Generators and ranks in finite partial transformation semigroups
title_full_unstemmed Generators and ranks in finite partial transformation semigroups
title_sort generators and ranks in finite partial transformation semigroups
author Garba, G.U.
Imam, A.T.
author_facet Garba, G.U.
Imam, A.T.
publishDate 2017
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description We extend the concept of path-cycle, to the semigroup Pn, of all partial maps on Xn={1,2,…,n}, and show that the classical decomposition of permutations into disjoint cycles can be extended to elements of Pn by means of path-cycles. The device is used to obtain information about generating sets for the semigroup Pn\Sn, of all singular partial maps of Xn. Moreover, we give a definition for the (m,r)-rank of Pn\Sn and show that it is n(n+1)/2.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/156026
citation_txt Generators and ranks in finite partial transformation semigroups / G.U. Garba, A.T. Imam // Algebra and Discrete Mathematics. — 2017. — Vol. 23, № 2. — С. 237-248. — Бібліогр.: 16 назв. — англ.
work_keys_str_mv AT garbagu generatorsandranksinfinitepartialtransformationsemigroups
AT imamat generatorsandranksinfinitepartialtransformationsemigroups
first_indexed 2025-12-01T13:59:30Z
last_indexed 2025-12-01T13:59:30Z
_version_ 1850860357957976064