Проекційні методи розв'язання інтегральних рівнянь Фредгольма І роду з (ϕ,β)-диференційовними ядрами та випадковими похибками
Оіримано оцінку похибки проекційних методів розв'язання рівнянь Фредгольма І роду Ax=y+ζ випадковим збуренням ζ у припущенні, що інтегральний оператор A має (ϕ,β)-диференційовне ядро, а математичне сподівання ∥ξ∥² не більше ніж σ² рамках цих припуцення отримана оцінка є повним аналогом відомого...
Збережено в:
| Опубліковано в: : | Український математичний журнал |
|---|---|
| Дата: | 1999 |
| Автор: | |
| Формат: | Стаття |
| Мова: | Ukrainian |
| Опубліковано: |
Інститут математики НАН України
1999
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/156136 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Проекційні методи розв'язання інтегральних рівнянь Фредгольма І роду з (ϕ,β)-диференційовними ядрами та випадковими похибками / Г.А. Переверзєва // Український математичний журнал. — 1999. — Т. 51, № 5. — С. 713–717. — Бібліогр.: 5 назв. — укр. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | Оіримано оцінку похибки проекційних методів розв'язання рівнянь Фредгольма І роду Ax=y+ζ випадковим збуренням ζ у припущенні, що інтегральний оператор A має (ϕ,β)-диференційовне ядро, а математичне сподівання ∥ξ∥² не більше ніж σ² рамках цих припуцення отримана оцінка є повним аналогом відомого результату Г. Ваннікко іа Р. Плато, що стосується детермінованого випадку, коли ∥ξ∥≤σ.
We estimate errors of projection methods for the solution of the Fredholm equaitons of the first kindAx=y+ζ with random perturbation ζ under the assumption that the integral operatorA has a (ϕ, β)-differentiable kernel and the mathematical expectation of ∥ξ∥² does not exceed σ². Under these assumptions, we obtain an estimate that is a complete analog of the well-known result by Vainikko and Plato for the deterministic case where ∥ξ∥≤σ.
|
|---|