Resolvent kernels that constitute an approximation of the identity and linear heat-transfer problems
Sufficient conditions are obtained for a Volterra integral equation whose kernel depends on an increasing parameter a to admit an approximation of the identity with respect to a in the form of a resolvent kernel. In this case, the solution of the integral equation tends to zero as a tends to infinit...
Saved in:
| Published in: | Український математичний журнал |
|---|---|
| Date: | 2000 |
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Інститут математики НАН України
2000
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/156146 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Resolvent kernels that constitute an approximation of the identity and linear heat-transfer problems / L.R. Berrone // Український математичний журнал. — 2000. — Т. 52, № 2. — С. 165–182. — Бібліогр.: 18 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | Sufficient conditions are obtained for a Volterra integral equation whose kernel depends on an increasing parameter a to admit an approximation of the identity with respect to a in the form of a resolvent kernel. In this case, the solution of the integral equation tends to zero as a tends to infinity, and we establish estimates of this convergence in L. These results are used for obtaining estimates of the convergence of linear heat-transfer boundary conditions to Dirichlet ones as the heat-transfer coefficient tends to infinity.
Отримані достатні умови, при яких інтегральне рівняння Вольтерра з ядром, що залежить від зростаючого параметра α, допускає наближення одиниці відносно α у вигляді резольвентного ядра. У цьому випадку розв'язок інгегрального рівняння прямує до нуля, коли а прямує до нескінченності, і отримані оцінки цієї збіжності в L∞. За допомогою цих результатів одержані оцінки збіжності лінійних граничних умов Діріхле, коли коефіцієнт теплообміну прямує до нескінченності.
|
|---|---|
| ISSN: | 1027-3190 |