Resolvent kernels that constitute an approximation of the identity and linear heat-transfer problems
Sufficient conditions are obtained for a Volterra integral equation whose kernel depends on an increasing parameter a to admit an approximation of the identity with respect to a in the form of a resolvent kernel. In this case, the solution of the integral equation tends to zero as a tends to infinit...
Gespeichert in:
| Veröffentlicht in: | Український математичний журнал |
|---|---|
| Datum: | 2000 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
2000
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/156146 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Resolvent kernels that constitute an approximation of the identity and linear heat-transfer problems / L.R. Berrone // Український математичний журнал. — 2000. — Т. 52, № 2. — С. 165–182. — Бібліогр.: 18 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-156146 |
|---|---|
| record_format |
dspace |
| spelling |
Berrone, L.R. 2019-06-17T21:12:42Z 2019-06-17T21:12:42Z 2000 Resolvent kernels that constitute an approximation of the identity and linear heat-transfer problems / L.R. Berrone // Український математичний журнал. — 2000. — Т. 52, № 2. — С. 165–182. — Бібліогр.: 18 назв. — англ. 1027-3190 https://nasplib.isofts.kiev.ua/handle/123456789/156146 517.9 Sufficient conditions are obtained for a Volterra integral equation whose kernel depends on an increasing parameter a to admit an approximation of the identity with respect to a in the form of a resolvent kernel. In this case, the solution of the integral equation tends to zero as a tends to infinity, and we establish estimates of this convergence in L. These results are used for obtaining estimates of the convergence of linear heat-transfer boundary conditions to Dirichlet ones as the heat-transfer coefficient tends to infinity. Отримані достатні умови, при яких інтегральне рівняння Вольтерра з ядром, що залежить від зростаючого параметра α, допускає наближення одиниці відносно α у вигляді резольвентного ядра. У цьому випадку розв'язок інгегрального рівняння прямує до нуля, коли а прямує до нескінченності, і отримані оцінки цієї збіжності в L∞. За допомогою цих результатів одержані оцінки збіжності лінійних граничних умов Діріхле, коли коефіцієнт теплообміну прямує до нескінченності. en Інститут математики НАН України Український математичний журнал Статті Resolvent kernels that constitute an approximation of the identity and linear heat-transfer problems Резольвентні ядра, що є апроксимацією одиниці, та лінійні задачі теплообміну Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Resolvent kernels that constitute an approximation of the identity and linear heat-transfer problems |
| spellingShingle |
Resolvent kernels that constitute an approximation of the identity and linear heat-transfer problems Berrone, L.R. Статті |
| title_short |
Resolvent kernels that constitute an approximation of the identity and linear heat-transfer problems |
| title_full |
Resolvent kernels that constitute an approximation of the identity and linear heat-transfer problems |
| title_fullStr |
Resolvent kernels that constitute an approximation of the identity and linear heat-transfer problems |
| title_full_unstemmed |
Resolvent kernels that constitute an approximation of the identity and linear heat-transfer problems |
| title_sort |
resolvent kernels that constitute an approximation of the identity and linear heat-transfer problems |
| author |
Berrone, L.R. |
| author_facet |
Berrone, L.R. |
| topic |
Статті |
| topic_facet |
Статті |
| publishDate |
2000 |
| language |
English |
| container_title |
Український математичний журнал |
| publisher |
Інститут математики НАН України |
| format |
Article |
| title_alt |
Резольвентні ядра, що є апроксимацією одиниці, та лінійні задачі теплообміну |
| description |
Sufficient conditions are obtained for a Volterra integral equation whose kernel depends on an increasing parameter a to admit an approximation of the identity with respect to a in the form of a resolvent kernel. In this case, the solution of the integral equation tends to zero as a tends to infinity, and we establish estimates of this convergence in L. These results are used for obtaining estimates of the convergence of linear heat-transfer boundary conditions to Dirichlet ones as the heat-transfer coefficient tends to infinity.
Отримані достатні умови, при яких інтегральне рівняння Вольтерра з ядром, що залежить від зростаючого параметра α, допускає наближення одиниці відносно α у вигляді резольвентного ядра. У цьому випадку розв'язок інгегрального рівняння прямує до нуля, коли а прямує до нескінченності, і отримані оцінки цієї збіжності в L∞. За допомогою цих результатів одержані оцінки збіжності лінійних граничних умов Діріхле, коли коефіцієнт теплообміну прямує до нескінченності.
|
| issn |
1027-3190 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/156146 |
| fulltext |
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
|
| citation_txt |
Resolvent kernels that constitute an approximation of the identity and linear heat-transfer problems / L.R. Berrone // Український математичний журнал. — 2000. — Т. 52, № 2. — С. 165–182. — Бібліогр.: 18 назв. — англ. |
| work_keys_str_mv |
AT berronelr resolventkernelsthatconstituteanapproximationoftheidentityandlinearheattransferproblems AT berronelr rezolʹventníâdraŝoêaproksimacíêûodinicítalíníinízadačíteploobmínu |
| first_indexed |
2025-11-26T14:37:21Z |
| last_indexed |
2025-11-26T14:37:21Z |
| _version_ |
1850626562503737344 |