Flat extension and phantom homology
Phantom homology arises in tight closure theory due to small non-exactness when `kernel' is not equal to `image' but `kernel' is in the tight closure of the `image'. In this paper we study a typical flat extension, which we call *-flat extension, such that upon tensoring which pr...
Збережено в:
| Опубліковано в: : | Algebra and Discrete Mathematics |
|---|---|
| Дата: | 2017 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2017
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/156237 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Flat extension and phantom homology / R. Bhattacharyya // Algebra and Discrete Mathematics. — 2017. — Vol. 24, № 1. — С. 90-98. — Бібліогр.: 10 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-156237 |
|---|---|
| record_format |
dspace |
| spelling |
Bhattacharyya, R. 2019-06-18T10:16:30Z 2019-06-18T10:16:30Z 2017 Flat extension and phantom homology / R. Bhattacharyya // Algebra and Discrete Mathematics. — 2017. — Vol. 24, № 1. — С. 90-98. — Бібліогр.: 10 назв. — англ. 1726-3255 2010 MSC:13A35. https://nasplib.isofts.kiev.ua/handle/123456789/156237 Phantom homology arises in tight closure theory due to small non-exactness when `kernel' is not equal to `image' but `kernel' is in the tight closure of the `image'. In this paper we study a typical flat extension, which we call *-flat extension, such that upon tensoring which preserves phantom homology. Along with other properties, we observe that *-flat extension preserves ghost regular sequence, which is a typical `tight closure' generalization of regular sequence. We also show that in some situations, under *-flat extension, test ideal of the *-flat algebra is the expansion of the test ideal of the base ring. en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics Flat extension and phantom homology Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Flat extension and phantom homology |
| spellingShingle |
Flat extension and phantom homology Bhattacharyya, R. |
| title_short |
Flat extension and phantom homology |
| title_full |
Flat extension and phantom homology |
| title_fullStr |
Flat extension and phantom homology |
| title_full_unstemmed |
Flat extension and phantom homology |
| title_sort |
flat extension and phantom homology |
| author |
Bhattacharyya, R. |
| author_facet |
Bhattacharyya, R. |
| publishDate |
2017 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
Phantom homology arises in tight closure theory due to small non-exactness when `kernel' is not equal to `image' but `kernel' is in the tight closure of the `image'. In this paper we study a typical flat extension, which we call *-flat extension, such that upon tensoring which preserves phantom homology. Along with other properties, we observe that *-flat extension preserves ghost regular sequence, which is a typical `tight closure' generalization of regular sequence. We also show that in some situations, under *-flat extension, test ideal of the *-flat algebra is the expansion of the test ideal of the base ring.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/156237 |
| citation_txt |
Flat extension and phantom homology / R. Bhattacharyya // Algebra and Discrete Mathematics. — 2017. — Vol. 24, № 1. — С. 90-98. — Бібліогр.: 10 назв. — англ. |
| work_keys_str_mv |
AT bhattacharyyar flatextensionandphantomhomology |
| first_indexed |
2025-12-07T20:07:10Z |
| last_indexed |
2025-12-07T20:07:10Z |
| _version_ |
1850881375988613120 |