Twin signed domination numbers in directed graphs

Let D=(V,A) be a finite simple directed graph (shortly digraph). A function f:V⟶{−1,1} is called a twin signed dominating function (TSDF) if f(N⁻[v])≥1 and f(N⁺[v])≥1 for each vertex v∈V. The twin signed domination number of D is γs*(D)=min{ω(f)∣f is a TSDF of D}. In this paper, we initiate the stud...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and Discrete Mathematics
Datum:2017
Hauptverfasser: Atapour, M., Norouzian, S., Sheikholeslami, S.M., Volkmann, L.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2017
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/156254
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Twin signed domination numbers in directed graphs / M. Atapour, S. Norouzian, S.M. Sheikholeslami, L. Volkmann // Algebra and Discrete Mathematics. — 2017. — Vol. 24, № 1. — С. 71-89. — Бібліогр.: 10 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-156254
record_format dspace
spelling Atapour, M.
Norouzian, S.
Sheikholeslami, S.M.
Volkmann, L.
2019-06-18T10:24:09Z
2019-06-18T10:24:09Z
2017
Twin signed domination numbers in directed graphs / M. Atapour, S. Norouzian, S.M. Sheikholeslami, L. Volkmann // Algebra and Discrete Mathematics. — 2017. — Vol. 24, № 1. — С. 71-89. — Бібліогр.: 10 назв. — англ.
1726-3255
2010 MSC:05C69.
https://nasplib.isofts.kiev.ua/handle/123456789/156254
Let D=(V,A) be a finite simple directed graph (shortly digraph). A function f:V⟶{−1,1} is called a twin signed dominating function (TSDF) if f(N⁻[v])≥1 and f(N⁺[v])≥1 for each vertex v∈V. The twin signed domination number of D is γs*(D)=min{ω(f)∣f is a TSDF of D}. In this paper, we initiate the study of twin signed domination in digraphs and we present sharp lower bounds for γs*(D) in terms of the order, size and maximum and minimum indegrees and outdegrees. Some of our results are extensions of well-known lower bounds of the classical signed domination numbers of graphs.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Twin signed domination numbers in directed graphs
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Twin signed domination numbers in directed graphs
spellingShingle Twin signed domination numbers in directed graphs
Atapour, M.
Norouzian, S.
Sheikholeslami, S.M.
Volkmann, L.
title_short Twin signed domination numbers in directed graphs
title_full Twin signed domination numbers in directed graphs
title_fullStr Twin signed domination numbers in directed graphs
title_full_unstemmed Twin signed domination numbers in directed graphs
title_sort twin signed domination numbers in directed graphs
author Atapour, M.
Norouzian, S.
Sheikholeslami, S.M.
Volkmann, L.
author_facet Atapour, M.
Norouzian, S.
Sheikholeslami, S.M.
Volkmann, L.
publishDate 2017
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description Let D=(V,A) be a finite simple directed graph (shortly digraph). A function f:V⟶{−1,1} is called a twin signed dominating function (TSDF) if f(N⁻[v])≥1 and f(N⁺[v])≥1 for each vertex v∈V. The twin signed domination number of D is γs*(D)=min{ω(f)∣f is a TSDF of D}. In this paper, we initiate the study of twin signed domination in digraphs and we present sharp lower bounds for γs*(D) in terms of the order, size and maximum and minimum indegrees and outdegrees. Some of our results are extensions of well-known lower bounds of the classical signed domination numbers of graphs.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/156254
citation_txt Twin signed domination numbers in directed graphs / M. Atapour, S. Norouzian, S.M. Sheikholeslami, L. Volkmann // Algebra and Discrete Mathematics. — 2017. — Vol. 24, № 1. — С. 71-89. — Бібліогр.: 10 назв. — англ.
work_keys_str_mv AT atapourm twinsigneddominationnumbersindirectedgraphs
AT norouzians twinsigneddominationnumbersindirectedgraphs
AT sheikholeslamism twinsigneddominationnumbersindirectedgraphs
AT volkmannl twinsigneddominationnumbersindirectedgraphs
first_indexed 2025-12-07T19:17:37Z
last_indexed 2025-12-07T19:17:37Z
_version_ 1850878258177900544