Identities related to integer partitions and complete Bell polynomials
Using the (universal) Theorem for the integer partitions and the q-binomial Theorem, we give arithmetical and combinatorial identities for the complete Bell polynomials as generating functions for the number of partitions of a given integer into k parts and the number of partitions of n into a given...
Gespeichert in:
| Veröffentlicht in: | Algebra and Discrete Mathematics |
|---|---|
| Datum: | 2017 |
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2017
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/156260 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Identities related to integer partitions and complete Bell polynomials / M. Mihoubi, H. Belbachir // Algebra and Discrete Mathematics. — 2017. — Vol. 24, № 1. — С. 158-168. — Бібліогр.: 20 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-156260 |
|---|---|
| record_format |
dspace |
| spelling |
Mihoubi, M. Belbachir, H. 2019-06-18T10:26:06Z 2019-06-18T10:26:06Z 2017 Identities related to integer partitions and complete Bell polynomials / M. Mihoubi, H. Belbachir // Algebra and Discrete Mathematics. — 2017. — Vol. 24, № 1. — С. 158-168. — Бібліогр.: 20 назв. — англ. 1726-3255 2010 MSC:11P81, 05A17. https://nasplib.isofts.kiev.ua/handle/123456789/156260 Using the (universal) Theorem for the integer partitions and the q-binomial Theorem, we give arithmetical and combinatorial identities for the complete Bell polynomials as generating functions for the number of partitions of a given integer into k parts and the number of partitions of n into a given number of parts. The authors would like to thank the anonymous referee for careful reading of the manuscript. en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics Identities related to integer partitions and complete Bell polynomials Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Identities related to integer partitions and complete Bell polynomials |
| spellingShingle |
Identities related to integer partitions and complete Bell polynomials Mihoubi, M. Belbachir, H. |
| title_short |
Identities related to integer partitions and complete Bell polynomials |
| title_full |
Identities related to integer partitions and complete Bell polynomials |
| title_fullStr |
Identities related to integer partitions and complete Bell polynomials |
| title_full_unstemmed |
Identities related to integer partitions and complete Bell polynomials |
| title_sort |
identities related to integer partitions and complete bell polynomials |
| author |
Mihoubi, M. Belbachir, H. |
| author_facet |
Mihoubi, M. Belbachir, H. |
| publishDate |
2017 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
Using the (universal) Theorem for the integer partitions and the q-binomial Theorem, we give arithmetical and combinatorial identities for the complete Bell polynomials as generating functions for the number of partitions of a given integer into k parts and the number of partitions of n into a given number of parts.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/156260 |
| citation_txt |
Identities related to integer partitions and complete Bell polynomials / M. Mihoubi, H. Belbachir // Algebra and Discrete Mathematics. — 2017. — Vol. 24, № 1. — С. 158-168. — Бібліогр.: 20 назв. — англ. |
| work_keys_str_mv |
AT mihoubim identitiesrelatedtointegerpartitionsandcompletebellpolynomials AT belbachirh identitiesrelatedtointegerpartitionsandcompletebellpolynomials |
| first_indexed |
2025-12-07T20:47:07Z |
| last_indexed |
2025-12-07T20:47:07Z |
| _version_ |
1850883889436819456 |