One class of solutions of Volterra equations with regular singularity
The Volterra integral equation of the second order with a regular singularity is considered. Under the conditions that a kernel K(x,t) is a real matrix function of order n×n with continuous partial derivatives up to order N+1 inclusively and K(0,0) has complex eigenvalues ν±i μ (ν>0), it is shown...
Gespeichert in:
| Veröffentlicht in: | Український математичний журнал |
|---|---|
| Datum: | 1997 |
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
1997
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/156280 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | One class of solutions of Volterra equations with regular singularity / S.G. KreinI, I.V. Sapronov // Український математичний журнал. — 1997. — Т. 49, № 3. — С. 424–432. — Бібліогр.: 6 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | The Volterra integral equation of the second order with a regular singularity is considered. Under the conditions that a kernel K(x,t) is a real matrix function of order n×n with continuous partial derivatives up to order N+1 inclusively and K(0,0) has complex eigenvalues ν±i μ (ν>0), it is shown that if ν>2|‖K|‖ C -N-1, then a given equation has two linearly independent solutions.
Розглядається інтегральне рівняння Вольтерра другого роду з регулярного сипгулярністю. У припущенні, що ядро K(x,t) —дійсна матричпозпачна функція порядку n×n з неперервними частинними похідними до порядку N+1 включно, і K(0,0) має комплексні власні значення ν±i μ (ν>0). Показано, що коли ν>2|‖K|‖ C -N-1, тоді існують два лінійно незалежних розв'язки даного рівняння.
|
|---|---|
| ISSN: | 1027-3190 |