On wildness of idempotent generated algebras associated with extended Dynkin diagrams

Let Λ denote an extended Dynkin diagram with vertex set Λ0 = {0, 1,... ,n}. For a vertex i, denote by S(i) the set of vertices j such that there is an edge joining i and j; one assumes the diagram has a unique vertex p, say p = 0, with |S(p)| = 3. Further, denote by Λ \ 0 the full subgraph of Λ...

Full description

Saved in:
Bibliographic Details
Published in:Algebra and Discrete Mathematics
Date:2004
Main Author: Bondarenko, V.M.
Format: Article
Language:English
Published: Інститут прикладної математики і механіки НАН України 2004
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/156457
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:On wildness of idempotent generated algebras associated with extended Dynkin diagrams / V.M. Bondarenko // Algebra and Discrete Mathematics. — 2004. — Vol. 3, № 3. — С. 1–11. — Бібліогр.: 4 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-156457
record_format dspace
spelling Bondarenko, V.M.
2019-06-18T14:12:06Z
2019-06-18T14:12:06Z
2004
On wildness of idempotent generated algebras associated with extended Dynkin diagrams / V.M. Bondarenko // Algebra and Discrete Mathematics. — 2004. — Vol. 3, № 3. — С. 1–11. — Бібліогр.: 4 назв. — англ.
1726-3255
2000 Mathematics Subject Classification: 16G60; 15A21, 46K10, 46L05.
https://nasplib.isofts.kiev.ua/handle/123456789/156457
Let Λ denote an extended Dynkin diagram with vertex set Λ0 = {0, 1,... ,n}. For a vertex i, denote by S(i) the set of vertices j such that there is an edge joining i and j; one assumes the diagram has a unique vertex p, say p = 0, with |S(p)| = 3. Further, denote by Λ \ 0 the full subgraph of Λ with vertex set Λ0 \ {0}. Let ∆ = (δi |i ∈ Λ0) ∈ Z |Λ0| be an imaginary root of Λ, and let k be a field of arbitrary characteristic (with unit element 1). We prove that if Λ is an extended Dynkin diagram of type D₄, E₆ or E₇, then the k-algebra Qk(Λ, ∆) with generators ei , i ∈ Λ0 \ {0}, and relations e 2 i = ei , eiej = 0 if i and j 6= i belong to the same connected component of Λ \ 0, and Pn i=1 δi ei = δ01 has wild representation time.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
On wildness of idempotent generated algebras associated with extended Dynkin diagrams
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On wildness of idempotent generated algebras associated with extended Dynkin diagrams
spellingShingle On wildness of idempotent generated algebras associated with extended Dynkin diagrams
Bondarenko, V.M.
title_short On wildness of idempotent generated algebras associated with extended Dynkin diagrams
title_full On wildness of idempotent generated algebras associated with extended Dynkin diagrams
title_fullStr On wildness of idempotent generated algebras associated with extended Dynkin diagrams
title_full_unstemmed On wildness of idempotent generated algebras associated with extended Dynkin diagrams
title_sort on wildness of idempotent generated algebras associated with extended dynkin diagrams
author Bondarenko, V.M.
author_facet Bondarenko, V.M.
publishDate 2004
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description Let Λ denote an extended Dynkin diagram with vertex set Λ0 = {0, 1,... ,n}. For a vertex i, denote by S(i) the set of vertices j such that there is an edge joining i and j; one assumes the diagram has a unique vertex p, say p = 0, with |S(p)| = 3. Further, denote by Λ \ 0 the full subgraph of Λ with vertex set Λ0 \ {0}. Let ∆ = (δi |i ∈ Λ0) ∈ Z |Λ0| be an imaginary root of Λ, and let k be a field of arbitrary characteristic (with unit element 1). We prove that if Λ is an extended Dynkin diagram of type D₄, E₆ or E₇, then the k-algebra Qk(Λ, ∆) with generators ei , i ∈ Λ0 \ {0}, and relations e 2 i = ei , eiej = 0 if i and j 6= i belong to the same connected component of Λ \ 0, and Pn i=1 δi ei = δ01 has wild representation time.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/156457
citation_txt On wildness of idempotent generated algebras associated with extended Dynkin diagrams / V.M. Bondarenko // Algebra and Discrete Mathematics. — 2004. — Vol. 3, № 3. — С. 1–11. — Бібліогр.: 4 назв. — англ.
work_keys_str_mv AT bondarenkovm onwildnessofidempotentgeneratedalgebrasassociatedwithextendeddynkindiagrams
first_indexed 2025-12-07T15:52:48Z
last_indexed 2025-12-07T15:52:48Z
_version_ 1850865371974729728