Kleinian singularities and algebras generated by elements that have given spectra and satisfy a scalar sum relation
We consider the algebras eiΠλ (Q)ei , where Πλ (Q) is the deformed preprojective algebra of weight λ and i is some vertex of Q, in the case where Q is an extended Dynkin diagram and λ lies on the hyperplane orthogonal to the minimal positive imaginary root δ. We prove that the center of eiΠλ (...
Збережено в:
| Опубліковано в: : | Algebra and Discrete Mathematics |
|---|---|
| Дата: | 2004 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2004
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/156459 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Kleinian singularities and algebras generated by elements that have given spectra and satisfy a scalar sum relation / A. Mellit // Algebra and Discrete Mathematics. — 2004. — Vol. 3, № 3. — С. 89–110. — Бібліогр.: 5 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-156459 |
|---|---|
| record_format |
dspace |
| spelling |
Mellit, A. 2019-06-18T14:13:00Z 2019-06-18T14:13:00Z 2004 Kleinian singularities and algebras generated by elements that have given spectra and satisfy a scalar sum relation / A. Mellit // Algebra and Discrete Mathematics. — 2004. — Vol. 3, № 3. — С. 89–110. — Бібліогр.: 5 назв. — англ. 1726-3255 https://nasplib.isofts.kiev.ua/handle/123456789/156459 We consider the algebras eiΠλ (Q)ei , where Πλ (Q) is the deformed preprojective algebra of weight λ and i is some vertex of Q, in the case where Q is an extended Dynkin diagram and λ lies on the hyperplane orthogonal to the minimal positive imaginary root δ. We prove that the center of eiΠλ (Q)ei is isomorphic to Oλ (Q), a deformation of the coordinate ring of the Kleinian singularity that corresponds to Q. We also find a minimal k for which a standard identity of degree k holds in eiΠλ (Q)ei . We prove that the algebras AP₁,...,Pn;µ = Chx₁, . . . , xn|Pi(xi) = 0, Pn i=1 x₁ = µei make a special case of the algebras ecΠλ (Q)ec for star-like quivers Q with the origin c. en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics Kleinian singularities and algebras generated by elements that have given spectra and satisfy a scalar sum relation Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Kleinian singularities and algebras generated by elements that have given spectra and satisfy a scalar sum relation |
| spellingShingle |
Kleinian singularities and algebras generated by elements that have given spectra and satisfy a scalar sum relation Mellit, A. |
| title_short |
Kleinian singularities and algebras generated by elements that have given spectra and satisfy a scalar sum relation |
| title_full |
Kleinian singularities and algebras generated by elements that have given spectra and satisfy a scalar sum relation |
| title_fullStr |
Kleinian singularities and algebras generated by elements that have given spectra and satisfy a scalar sum relation |
| title_full_unstemmed |
Kleinian singularities and algebras generated by elements that have given spectra and satisfy a scalar sum relation |
| title_sort |
kleinian singularities and algebras generated by elements that have given spectra and satisfy a scalar sum relation |
| author |
Mellit, A. |
| author_facet |
Mellit, A. |
| publishDate |
2004 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
We consider the algebras eiΠλ
(Q)ei
, where Πλ
(Q)
is the deformed preprojective algebra of weight λ and i is some vertex of Q, in the case where Q is an extended Dynkin diagram and
λ lies on the hyperplane orthogonal to the minimal positive imaginary root δ. We prove that the center of eiΠλ
(Q)ei
is isomorphic
to Oλ
(Q), a deformation of the coordinate ring of the Kleinian singularity that corresponds to Q. We also find a minimal k for which
a standard identity of degree k holds in eiΠλ
(Q)ei
. We prove that
the algebras AP₁,...,Pn;µ = Chx₁, . . . , xn|Pi(xi) = 0,
Pn
i=1 x₁ = µei
make a special case of the algebras ecΠλ
(Q)ec for star-like quivers
Q with the origin c.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/156459 |
| citation_txt |
Kleinian singularities and algebras generated by elements that have given spectra and satisfy a scalar sum relation / A. Mellit // Algebra and Discrete Mathematics. — 2004. — Vol. 3, № 3. — С. 89–110. — Бібліогр.: 5 назв. — англ. |
| work_keys_str_mv |
AT mellita kleiniansingularitiesandalgebrasgeneratedbyelementsthathavegivenspectraandsatisfyascalarsumrelation |
| first_indexed |
2025-12-07T19:43:43Z |
| last_indexed |
2025-12-07T19:43:43Z |
| _version_ |
1850879900262596608 |