Kleinian singularities and algebras generated by elements that have given spectra and satisfy a scalar sum relation

We consider the algebras eiΠλ (Q)ei , where Πλ (Q) is the deformed preprojective algebra of weight λ and i is some vertex of Q, in the case where Q is an extended Dynkin diagram and λ lies on the hyperplane orthogonal to the minimal positive imaginary root δ. We prove that the center of eiΠλ (...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Algebra and Discrete Mathematics
Дата:2004
Автор: Mellit, A.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2004
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/156459
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Kleinian singularities and algebras generated by elements that have given spectra and satisfy a scalar sum relation / A. Mellit // Algebra and Discrete Mathematics. — 2004. — Vol. 3, № 3. — С. 89–110. — Бібліогр.: 5 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-156459
record_format dspace
spelling Mellit, A.
2019-06-18T14:13:00Z
2019-06-18T14:13:00Z
2004
Kleinian singularities and algebras generated by elements that have given spectra and satisfy a scalar sum relation / A. Mellit // Algebra and Discrete Mathematics. — 2004. — Vol. 3, № 3. — С. 89–110. — Бібліогр.: 5 назв. — англ.
1726-3255
https://nasplib.isofts.kiev.ua/handle/123456789/156459
We consider the algebras eiΠλ (Q)ei , where Πλ (Q) is the deformed preprojective algebra of weight λ and i is some vertex of Q, in the case where Q is an extended Dynkin diagram and λ lies on the hyperplane orthogonal to the minimal positive imaginary root δ. We prove that the center of eiΠλ (Q)ei is isomorphic to Oλ (Q), a deformation of the coordinate ring of the Kleinian singularity that corresponds to Q. We also find a minimal k for which a standard identity of degree k holds in eiΠλ (Q)ei . We prove that the algebras AP₁,...,Pn;µ = Chx₁, . . . , xn|Pi(xi) = 0, Pn i=1 x₁ = µei make a special case of the algebras ecΠλ (Q)ec for star-like quivers Q with the origin c.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Kleinian singularities and algebras generated by elements that have given spectra and satisfy a scalar sum relation
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Kleinian singularities and algebras generated by elements that have given spectra and satisfy a scalar sum relation
spellingShingle Kleinian singularities and algebras generated by elements that have given spectra and satisfy a scalar sum relation
Mellit, A.
title_short Kleinian singularities and algebras generated by elements that have given spectra and satisfy a scalar sum relation
title_full Kleinian singularities and algebras generated by elements that have given spectra and satisfy a scalar sum relation
title_fullStr Kleinian singularities and algebras generated by elements that have given spectra and satisfy a scalar sum relation
title_full_unstemmed Kleinian singularities and algebras generated by elements that have given spectra and satisfy a scalar sum relation
title_sort kleinian singularities and algebras generated by elements that have given spectra and satisfy a scalar sum relation
author Mellit, A.
author_facet Mellit, A.
publishDate 2004
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description We consider the algebras eiΠλ (Q)ei , where Πλ (Q) is the deformed preprojective algebra of weight λ and i is some vertex of Q, in the case where Q is an extended Dynkin diagram and λ lies on the hyperplane orthogonal to the minimal positive imaginary root δ. We prove that the center of eiΠλ (Q)ei is isomorphic to Oλ (Q), a deformation of the coordinate ring of the Kleinian singularity that corresponds to Q. We also find a minimal k for which a standard identity of degree k holds in eiΠλ (Q)ei . We prove that the algebras AP₁,...,Pn;µ = Chx₁, . . . , xn|Pi(xi) = 0, Pn i=1 x₁ = µei make a special case of the algebras ecΠλ (Q)ec for star-like quivers Q with the origin c.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/156459
citation_txt Kleinian singularities and algebras generated by elements that have given spectra and satisfy a scalar sum relation / A. Mellit // Algebra and Discrete Mathematics. — 2004. — Vol. 3, № 3. — С. 89–110. — Бібліогр.: 5 назв. — англ.
work_keys_str_mv AT mellita kleiniansingularitiesandalgebrasgeneratedbyelementsthathavegivenspectraandsatisfyascalarsumrelation
first_indexed 2025-12-07T19:43:43Z
last_indexed 2025-12-07T19:43:43Z
_version_ 1850879900262596608