Regularity results for Kolmogorov equations in L²(H, μ) spaces and applications
We consider the transition semigroup Rt =e tsA associated to an Ornstein—Uhlenbeck process in a Hilbert space H. We characterize, under suitable assumptions, the domain of A as a subspace W²,²(H, μ), where μ is the invariant measure associated to Rt . This characterization is then used to treat some...
Gespeichert in:
| Datum: | 1997 |
|---|---|
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут математики НАН України
1997
|
| Schriftenreihe: | Український математичний журнал |
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/156490 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Regularity results for Kolmogorov equations in L²(H, μ) spaces and applications / G. Da Prato // Український математичний журнал. — 1997. — Т. 49, № 3. — С. 448–457. — Бібліогр.: 9 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | We consider the transition semigroup Rt =e tsA associated to an Ornstein—Uhlenbeck process in a Hilbert space H. We characterize, under suitable assumptions, the domain of A as a subspace W²,²(H, μ), where μ is the invariant measure associated to Rt . This characterization is then used to treat some Kolmogorov equations with variable coefficients. |
|---|