Revisiting (logarithmic) scaling relations using renormalization group
We explicitly compute the critical exponents associated with logarithmic corrections (the so-called hatted exponents) starting from the renormalization group equations and the mean field behavior for a wide class of models at the upper critical behavior (for short and long range φ n -theories) an...
Saved in:
| Published in: | Condensed Matter Physics |
|---|---|
| Date: | 2017 |
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Інститут фізики конденсованих систем НАН України
2017
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/156547 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Revisiting (logarithmic) scaling relations using renormalization group / J.J. Ruiz-Lorenzo // Condensed Matter Physics. — 2017. — Т. 20, № 1. — С. 13601: 1–10. — Бібліогр.: 25 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | We explicitly compute the critical exponents associated with logarithmic corrections (the so-called hatted exponents) starting from the renormalization group equations and the mean field behavior for a wide class of models
at the upper critical behavior (for short and long range φ
n
-theories) and below it. This allows us to check the
scaling relations among these critical exponents obtained by analysing the complex singularities (Lee-Yang and
Fisher zeroes) of these models. Moreover, we have obtained an explicit method to compute the ϙˆ exponent
[defined by ξ ∼ L(logL)
ϙˆ
] and, finally, we have found a new derivation of the scaling law associated with it.
Ми явно обчислюємо критичнi показники, пов’язанi з логарифмiчними поправками, виходячи з рiвнянь
ренормгрупи i середньопольової поведiнки для широкого класу моделей як при вищiй критичнiй вимiрностi (для коротко- i далекосяжних φ
n
-теорiй), так i нижче вiд неї. Це дозволяє нам перевiрити спiввiдношення скейлiнгу, що пов’язують критичнi показники, аналiзуючи комплекснi сингулярностi (нулi Лi-Янга
i Фiшера) цих моделей. Окрiм того, ми запропонували явний метод для обчислення показника ϙˆ [означеного як ξ ∼ L(logL)
ϙˆ
] i, накiнець, ми отримали нове виведення закона скейлiнгу, пов’язаного з цим
показником.
|
|---|---|
| ISSN: | 1607-324X |