BBGKY chain of kinetic equations, non-equilibrium statistical operator method and collective variable method in the statistical theory of non-equilibrium liquids
A chain of kinetic equations for non-equilibrium one-particle, two-particle and s-particle distribution functions of particles which take into account nonlinear hydrodynamic fluctuations is proposed. The method of Zubarev non-equilibrium statistical operator with projection is used. Nonlinear hydr...
Saved in:
| Published in: | Condensed Matter Physics |
|---|---|
| Date: | 2016 |
| Main Authors: | , , |
| Format: | Article |
| Language: | English |
| Published: |
Інститут фізики конденсованих систем НАН України
2016
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/156560 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | BBGKY chain of kinetic equations, non-equilibrium statistical operator method and collective variable method in the statistical theory of non-equilibrium liquids / I.R. Yukhnovskii, P.A. Hlushak, M.V. Tokarchuk // Condensed Matter Physics. — 2016. — Т. 19, № 4. — С. 43705: 1–18. — Бібліогр.: 51 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-156560 |
|---|---|
| record_format |
dspace |
| spelling |
Yukhnovskii, I.R. Hlushak, P.A. Tokarchuk, M.V. 2019-06-18T16:35:44Z 2019-06-18T16:35:44Z 2016 BBGKY chain of kinetic equations, non-equilibrium statistical operator method and collective variable method in the statistical theory of non-equilibrium liquids / I.R. Yukhnovskii, P.A. Hlushak, M.V. Tokarchuk // Condensed Matter Physics. — 2016. — Т. 19, № 4. — С. 43705: 1–18. — Бібліогр.: 51 назв. — англ. 1607-324X PACS: 74.40.Gh, 05.70.L, 64.70.F DOI:10.5488/CMP.19.43705 arXiv:1612.07219 https://nasplib.isofts.kiev.ua/handle/123456789/156560 A chain of kinetic equations for non-equilibrium one-particle, two-particle and s-particle distribution functions of particles which take into account nonlinear hydrodynamic fluctuations is proposed. The method of Zubarev non-equilibrium statistical operator with projection is used. Nonlinear hydrodynamic fluctuations are described with non-equilibrium distribution function of collective variables that satisfies generalized Fokker-Planck equation. On the basis of the method of collective variables, a scheme of calculation of non-equilibrium structural distribution function of collective variables and their hydrodynamic speeds (above Gaussian approximation) contained in the generalized Fokker-Planck equation for the non-equilibrium distribution function of collective variables is proposed. Contributions of short- and long-range interactions between particles are separated, so that the short-range interactions (for example, the model of hard spheres) are described in the coordinate space, while the long-range interactions — in the space of collective variables. Short-ranged component is regarded as basic, and corresponds to the BBGKY chain of equations for the model of hard spheres. Запропоновано ланцюжок кiнетичних рiвнянь для нерiвноважних одночастинкової, двочастинкової i sчастинкової функцiй розподiлу частинок з урахуванням нелiнiйних гiдродинамiчних флуктуацiй. Використовується метод нерiвноважного статистичного оператора Зубарєва з проектуванням. Нелiнiйнi гiдродинамiчнi флуктуацiї описуються нерiвноважною функцiєю розподiлу колективних змiнних, що задовольняє узагальнене рiвняння Фоккера-Планка. На основi методу колективних змiнних запропоновано спосiб розрахунку нерiвноважної структурної функцiї розподiлу колективних змiнних та їх гiдродинамiчних швидкостей (вище гаусового наближення), що мiстяться в узагальненому рiвняннi Фоккера-Планка для нерiвноважної функцiї розподiлу колективних змiнних. При цьому роздiленi вклади вiд короткодiючих i далекодiючих взаємодiй мiж частинками, що привело до того, що короткодiючi взаємодiї (наприклад, модель твердих сфер) описуються в координатному просторi, а далекодiючi — у просторi колективних змiнних. Короткодiюча складова розглядається як базисна, якiй вiдповiдає ланцюжок рiвнянь ББГКI для моделi твердих сфер. en Інститут фізики конденсованих систем НАН України Condensed Matter Physics BBGKY chain of kinetic equations, non-equilibrium statistical operator method and collective variable method in the statistical theory of non-equilibrium liquids Ланцюжок кiнетичних рiвнянь ББГКI, метод нерiвноважного статистичного оператора та метод колективних змiнних в нерiвноважнiй статистичнiй теорiї рiдин Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
BBGKY chain of kinetic equations, non-equilibrium statistical operator method and collective variable method in the statistical theory of non-equilibrium liquids |
| spellingShingle |
BBGKY chain of kinetic equations, non-equilibrium statistical operator method and collective variable method in the statistical theory of non-equilibrium liquids Yukhnovskii, I.R. Hlushak, P.A. Tokarchuk, M.V. |
| title_short |
BBGKY chain of kinetic equations, non-equilibrium statistical operator method and collective variable method in the statistical theory of non-equilibrium liquids |
| title_full |
BBGKY chain of kinetic equations, non-equilibrium statistical operator method and collective variable method in the statistical theory of non-equilibrium liquids |
| title_fullStr |
BBGKY chain of kinetic equations, non-equilibrium statistical operator method and collective variable method in the statistical theory of non-equilibrium liquids |
| title_full_unstemmed |
BBGKY chain of kinetic equations, non-equilibrium statistical operator method and collective variable method in the statistical theory of non-equilibrium liquids |
| title_sort |
bbgky chain of kinetic equations, non-equilibrium statistical operator method and collective variable method in the statistical theory of non-equilibrium liquids |
| author |
Yukhnovskii, I.R. Hlushak, P.A. Tokarchuk, M.V. |
| author_facet |
Yukhnovskii, I.R. Hlushak, P.A. Tokarchuk, M.V. |
| publishDate |
2016 |
| language |
English |
| container_title |
Condensed Matter Physics |
| publisher |
Інститут фізики конденсованих систем НАН України |
| format |
Article |
| title_alt |
Ланцюжок кiнетичних рiвнянь ББГКI, метод нерiвноважного статистичного оператора та метод колективних змiнних в нерiвноважнiй статистичнiй теорiї рiдин |
| description |
A chain of kinetic equations for non-equilibrium one-particle, two-particle and s-particle distribution functions
of particles which take into account nonlinear hydrodynamic fluctuations is proposed. The method of Zubarev
non-equilibrium statistical operator with projection is used. Nonlinear hydrodynamic fluctuations are described
with non-equilibrium distribution function of collective variables that satisfies generalized Fokker-Planck equation. On the basis of the method of collective variables, a scheme of calculation of non-equilibrium structural
distribution function of collective variables and their hydrodynamic speeds (above Gaussian approximation)
contained in the generalized Fokker-Planck equation for the non-equilibrium distribution function of collective
variables is proposed. Contributions of short- and long-range interactions between particles are separated, so
that the short-range interactions (for example, the model of hard spheres) are described in the coordinate
space, while the long-range interactions — in the space of collective variables. Short-ranged component is regarded as basic, and corresponds to the BBGKY chain of equations for the model of hard spheres.
Запропоновано ланцюжок кiнетичних рiвнянь для нерiвноважних одночастинкової, двочастинкової i sчастинкової функцiй розподiлу частинок з урахуванням нелiнiйних гiдродинамiчних флуктуацiй. Використовується метод нерiвноважного статистичного оператора Зубарєва з проектуванням. Нелiнiйнi гiдродинамiчнi флуктуацiї описуються нерiвноважною функцiєю розподiлу колективних змiнних, що задовольняє узагальнене рiвняння Фоккера-Планка. На основi методу колективних змiнних запропоновано спосiб розрахунку нерiвноважної структурної функцiї розподiлу колективних змiнних та їх гiдродинамiчних
швидкостей (вище гаусового наближення), що мiстяться в узагальненому рiвняннi Фоккера-Планка для
нерiвноважної функцiї розподiлу колективних змiнних. При цьому роздiленi вклади вiд короткодiючих
i далекодiючих взаємодiй мiж частинками, що привело до того, що короткодiючi взаємодiї (наприклад,
модель твердих сфер) описуються в координатному просторi, а далекодiючi — у просторi колективних
змiнних. Короткодiюча складова розглядається як базисна, якiй вiдповiдає ланцюжок рiвнянь ББГКI для
моделi твердих сфер.
|
| issn |
1607-324X |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/156560 |
| citation_txt |
BBGKY chain of kinetic equations, non-equilibrium statistical operator method and collective variable method in the statistical theory of non-equilibrium liquids / I.R. Yukhnovskii, P.A. Hlushak, M.V. Tokarchuk // Condensed Matter Physics. — 2016. — Т. 19, № 4. — С. 43705: 1–18. — Бібліогр.: 51 назв. — англ. |
| work_keys_str_mv |
AT yukhnovskiiir bbgkychainofkineticequationsnonequilibriumstatisticaloperatormethodandcollectivevariablemethodinthestatisticaltheoryofnonequilibriumliquids AT hlushakpa bbgkychainofkineticequationsnonequilibriumstatisticaloperatormethodandcollectivevariablemethodinthestatisticaltheoryofnonequilibriumliquids AT tokarchukmv bbgkychainofkineticequationsnonequilibriumstatisticaloperatormethodandcollectivevariablemethodinthestatisticaltheoryofnonequilibriumliquids AT yukhnovskiiir lancûžokkinetičnihrivnânʹbbgkimetodnerivnovažnogostatističnogooperatoratametodkolektivnihzminnihvnerivnovažniistatističniiteoriíridin AT hlushakpa lancûžokkinetičnihrivnânʹbbgkimetodnerivnovažnogostatističnogooperatoratametodkolektivnihzminnihvnerivnovažniistatističniiteoriíridin AT tokarchukmv lancûžokkinetičnihrivnânʹbbgkimetodnerivnovažnogostatističnogooperatoratametodkolektivnihzminnihvnerivnovažniistatističniiteoriíridin |
| first_indexed |
2025-11-25T23:28:47Z |
| last_indexed |
2025-11-25T23:28:47Z |
| _version_ |
1850584197714935808 |
| fulltext |
Condensed Matter Physics, 2016, Vol. 19, No 4, 43705: 1–18
DOI: 10.5488/CMP.19.43705
http://www.icmp.lviv.ua/journal
BBGKY chain of kinetic equations, non-equilibrium
statistical operator method and collective variable
method in the statistical theory of non-equilibrium
liquids
I.R. Yukhnovskii, P.A. Hlushak, M.V. Tokarchuk
Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine,
1 Svientsitskii St., 79011 Lviv, Ukraine
Received July 6, 2016, in final form November 1, 2016
A chain of kinetic equations for non-equilibrium one-particle, two-particle and s-particle distribution functions
of particles which take into account nonlinear hydrodynamic fluctuations is proposed. The method of Zubarev
non-equilibrium statistical operator with projection is used. Nonlinear hydrodynamic fluctuations are described
with non-equilibrium distribution function of collective variables that satisfies generalized Fokker-Planck equa-
tion. On the basis of the method of collective variables, a scheme of calculation of non-equilibrium structural
distribution function of collective variables and their hydrodynamic speeds (above Gaussian approximation)
contained in the generalized Fokker-Planck equation for the non-equilibrium distribution function of collective
variables is proposed. Contributions of short- and long-range interactions between particles are separated, so
that the short-range interactions (for example, the model of hard spheres) are described in the coordinate
space, while the long-range interactions — in the space of collective variables. Short-ranged component is re-
garded as basic, and corresponds to the BBGKY chain of equations for the model of hard spheres.
Key words: non-linear fluctuations, non-equilibrium statistical operator, distribution function, Fokker–Planck
equation, simple fluid
PACS: 74.40.Gh, 05.70.L, 64.70.F
1. Introduction
A development of equilibrium and non-equilibrium statistical mechanics of classical and quantum
systems, which began in 1970-ies following the work by Bogoliubov [1] and works by Born, Green [2],
Kirkwood [3, 4], Yvon [5] and continues today, has led to a substantial progress in the theory of gases,
liquids, plasma. Bogoliubov in the book [1], which turns 70 years, in a strict form formulated the idea
of a hierarchy of relaxation times in a system of many interacting particles and a reduced number of
parameters describing the evolution of the system. This idea played a major role in the development of
modern methods of non-equilibrium theory to study the dynamics of macroscopic systems at kinetic and
hydrodynamic stages, based on the fundamental principles of statistical mechanics.
Important for the development of this direction were the works by Zubarev [6–8], Zwanzig [9–11],
Robertson [12, 13], Kawasaki and Gunton [14], Peletminskii and Yatsenko [15], Zubarev and Kalashnikov
[16]. The results of the research done in this field are detailed in books [17–23] and reviews [24, 25].
However, along with the important results of theories in statistical physics, as well as in other fields
of modern physics, there are still many unsolved problems, especially in the theory of non-equilibrium
processes.
In dense gases and fluids in the field of phase transitions, the heterophase fluctuations play an im-
portant role [26–34]. They always appear and disappear during the diffusion processes. In the field of
© I.R. Yukhnovskii, P.A. Hlushak, M.V. Tokarchuk, 2016 43705-1
http://dx.doi.org/10.5488/CMP.19.43705
http://www.icmp.lviv.ua/journal
I.R. Yukhnovskii, P.A. Hlushak, M.V. Tokarchuk
phase transitions, the heterophase fluctuations are factors forming a new phase, in particular, forming
the bubbles in a liquid or drops in a gas.
The non-equilibrium gas–liquid phase transition is characterized by nonlinear hydrodynamic fluc-
tuations of mass, momentum and particle energy, which describe a collective nature of the process and
define the spatial and temporal behavior of the transport coefficients (viscosity, thermal conductivity),
time correlation functions and a dynamic structure factor. At the same time, due to heterogeneity in col-
lective dynamics of these fluctuations, liquid drops emerge in the gas phase (in case of transition from the
gas phase to the liquid phase), or the gas bubbles emerge in the liquid phase (in case of transition from
the liquid phase to the gas phase), the formation of which is of a kinetic nature described by a redistribu-
tion of momentum and energy, i.e., when a certain group of particles in the system receives a significant
decrease (in the case of drops), or increase (in the case of bubbles) of kinetic energy. The particles, that
form bubbles or droplets, diffuse out of their phases in the liquid or in the gas and vice versa. They have
different values of momentum, energy and pressure in different phases. All these features are related to
the non-equilibrium one-, two-, s-particle distribution functions (which depend on the coordinate, mo-
mentum and time) that satisfy the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) chain of equations.
They are the real heterophase systems inwhich bubble embryoses, drops or small crystals are of a kinetic
nature caused by nonlinear fluctuations, changes in temperature, pressure. In our case, the heterophase
formations (containing afinite particle number in this or that phase) can be described by non-equilibrium
distribution function fs (xs ; t). The kinetic processes within heterophase formations are described respec-
tively by the kinetic equations [35], in which the right-hand side contains the summands that take into ac-
count the mutual effect of kinetic and hydrodynamic processes. Obviously, such heterophase formations
form and disappear (with finite lifetime), exchanging by both the particles and energy with the surround-
ing particles in the background of nonlinear hydrodynamic fluctuations of densities of particle number,
momentum, energy; the contribution of such fluctuations grows at phase transformations. These nonlin-
ear fluctuations are described by the Fokker-Planck equation [35]. Here, in the processes of interaction
between kinetic and hydrodynamic fluctuations with appropriate changes of temperature and pressure
in heterophase formations due to spontaneous symmetry breaking there can be self-organizing processes
of sorts of particle motion with group velocity fs (xs ; t) = fs (r1 − vt ,p1, . . . ,rs − vt ,ps), which leads to an
automodel (quasi-soliton) spreading of heterophase formations in the respective system.
Such processes require a detailed separate study due to the calculation difficulties of kinetic and hy-
drodynamic transport kernels in equations of transport. In this connection we would like to draw atten-
tion to the Klimontovich article [36], in which to a certain extent there is realized a consistent description
of kinetics and hydrodynamics (diffusion processes are taken into account) for gas-liquid phase transi-
tion.
Themain difficulty is that the kinetics and hydrodynamics of these processes are strongly interrelated
and should be considered simultaneously. In articles [37–39] there is proposed a consistent description of
kinetic and hydrodynamic processes in dense gases and liquids on the basis of Zubarev non-equilibrium
statistical operator [19, 20].
This article is an extension or generalization of article [35]. Here, we want to emphasize certain as-
pects. In [35], the main parameter for the description of kinetic processes was one-particle non-equilib-
rium distribution function that corresponds to the gas description. In order to get a consistent description
of kinetic and hydrodynamic processes (which is important for dense gases and liquids [37–39]) it is nec-
essary to include the density of average potential energy as an important parameter. Having included this
parameter, we can identify explicit contributions connected with short- and long-range interactions be-
tween particles. For dilute gases, this parameter can be neglected, while for dense gases and liquids one
makes an important contribution compared to kinetic energy. In this contribution, we will develop an
approach [35] for a consistent description of kinetic and hydrodynamic processes that are characterized
by non-linear fluctuations taking into account short-range and long-range interactions between particles.
The approach is important for the description of non-equilibrium gas–liquid phase transition.
In Section 2, we will obtain the non-equilibrium statistical operator for non-equilibrium state of the
system when the parameters of a reduced description are represented by a non-equilibrium one-particle
distribution function, the density of non-equilibrium average value of potential energy of particle in-
teraction and a distribution function of non-equilibrium nonlinear hydrodynamic variables. Using this
operator, we construct kinetic equations for non-equilibrium one-, two-, s-particle distribution functions
43705-2
BBGKY chain of kinetic equations, non-equilibrium statistical operator method
which take into account nonlinear hydrodynamic fluctuations, for which the non-equilibrium distribu-
tion function satisfies a generalized Fokker–Planck equation.
In Section 3, we will consider a scheme for calculation of the structural distribution function of hydro-
dynamic collective variables and their hydrodynamic velocities (in approximation higher than Gaussian),
which enter the generalized Fokker–Planck equation for the non-equilibrium distribution function of hy-
drodynamic collective variables. We separate the contributions from short-range and long-range inter-
actions between particles, which will be described in the coordinate space and in the space of collective
variables, respectively. Moreover, the short-range component will be considered in a simplified manner,
which in our case will correspond to the BBGKY chain of equations for the model of hard spheres [40].
2. Non-equilibrium distribution function and BBGKY chain of kinetic eq-
uations in the Zubarev non-equilibrium statistical operator method
For a consistent description of kinetic and hydrodynamic fluctuations in a classical one-component
fluid, it is necessary to select the description parameters for one-particle and collective processes. For
these parameters, we choose the non-equilibrium one-particle distribution function f1(x; t) = 〈n̂1(x)〉t ,
the density of non-equilibrium average value of potential energy of particle interaction H int(r, t) =
〈Ĥ int(r)〉t and distribution function of hydrodynamic variables f (a; t) = 〈δ(â−a)〉t . Here, the phase func-
tion
n̂1(x) =
N
∑
j=1
δ(x − x j ) =
N
∑
j=1
δ(r−r j )δ(p−p j ) (2.1)
is the microscopic particle number density. x j = (r j ,p j ) is the set of phase variables (coordinates and
momenta), N is the total number of particles in a volume V .
Ĥ int(r)=
1
2
N
∑
j,l=1
Φ(|rl j |)δ(r−r j ) (2.2)
is the microscopic density of the potential energy of particle interaction. Amicroscopic phase distribution
of hydrodynamic variables is given by
f̂ (a) = δ(â −a) =
3
∏
l=1
∏
k
δ(âlk −alk), (2.3)
where â1k = n̂k , â2k = Ĵk , â3k = ε̂k are the Fourier components of the densities of particle number, mo-
mentum and energy:
n̂k =
N
∑
j=1
e−ikr j , Ĵk =
N
∑
j=1
p j e−ikr j , ε̂k =
N
∑
j=1
[
p2
j
2m
+
1
2
N
∑
l, j=1
Φ(|rl j |)
]
e−ikr j , (2.4)
and amk = (nk,Jk,εk) are the corresponding collective variables. Φ(|rl j |) =Φ(|rl −r j |) is the pair interac-
tion potential between particles, which we assume can be represented as the sum of short-range interac-
tion Φ
sh(|rl j |) and long-range interaction Φ
long(|rl j |) potentials:
Φ(|rl j |) =Φ
sh(|rl j |)+Φ
long(|rl j |).
The introduction of 〈Ĥ int(r)〉t as a parameter is important step, as for liquids and dense gases it gives a
larger contribution than the kinetic part of energy connected with 〈n̂1(x)〉t . In addition this parameter
describes the collective dynamics of short- and long-range interactions:
〈Ĥ int(r)〉t = 〈Ĥ sh(r)〉t +
1
2V 2
∑
q,k
ν(k)eiqr
(
〈n̂q+kn̂−k〉
t −〈n̂q〉
t
)
,
〈n̂q+kn̂−k〉
t = F (q,k; t) is the non-equilibrium scattering function which connected with non-equilibrium
dynamic factor of system, ν(k) =
∫
dr e−ikr
Φ
long(|r|) is the Fourier component of long-range potential of
43705-3
I.R. Yukhnovskii, P.A. Hlushak, M.V. Tokarchuk
particle interactions. The average values 〈n̂1(x)〉t , 〈Ĥ int(r)〉t and 〈δ(â − a)〉t are calculated by means of
the non-equilibrium N -particle distribution function ̺(xN ; t), that satisfies the Liouville equation. In line
with the idea of reduced description of non-equilibrium states this function is the functional
̺
(
xN ; t
)
= ̺
(
. . . , f1(x; t),〈Ĥ int(r)〉t , f (a; t), . . .
)
. (2.5)
In order to find a non-equilibrium distribution function ̺(xN ; t) we use Zubarev’s method [19, 20, 41],
in which a general solution of Liouville equation taking into account a projection procedure can be pre-
sented in the form:
̺
(
xN ; t
)
= ̺rel
(
xN ; t
)
−
t
∫
−∞
dt ′eǫ(t ′−t )T (t , t ′)
[
1−Prel(t ′)
]
iLN̺rel
(
xN ; t ′
)
, (2.6)
where ǫ→+0 after thermodynamic limiting transition. The source selects the retarded solutions of Liou-
ville equationwith operator iLN . T (t , t ′)= exp+{−
∫t
t ′ dt ′[1−Prel(t ′)]iLN } is the generalized time evolution
operator taking into account Kawasaki-Gunton projection Prel(t ′). The structure of Prel(t ′) depends on the
relevant distribution function ̺rel(xN ; t), which in method by Zubarev is determined from extremum of
the information entropy at simultaneous conservation of normalization condition
∫
dΓN̺rel
(
xN ; t
)
= 1, dΓN =
(dx)N
h3N N !
=
(dx1, . . . ,dxN )
h3N N !
, dx = drdp, (2.7)
and the fact that the parameters of the reduced description, f1(x; t) and f (a; t) are fixed. Then, a relevant
distribution function can be written as follows:
̺rel
(
xN ; t
)
= exp
[
−Φ(t)−
∫
dxγ(x; t)n̂1(x)−
∫
drβ(r; t)Ĥ int(r)−
∫
daF (a; t) f̂ (a)
]
, (2.8)
where da is the integration over collective variables:
da =
∏
k
dnkdjkdεk , dnk = dRenk dImnk , dεk = dReεk dImεk ,
djk = d jx,k d jy,k d jz,k , d jx,k = dRe jx,k dIm jx,k , . . . .
The Massieu-Planck functional Φ(t) is determined from the normalization condition for the relevant dis-
tribution function
Φ(t)= ln
∫
dΓN exp
[
−
∫
dxγ(x; t)n̂1(x)−
∫
drβ(r; t)Ĥ int(r)−
∫
daF (a; t) f̂ (a)
]
.
The functions γ(x; t), β(r; t) and F (a; t) are the Lagrange multipliers and are determined from the
self-consistent conditions:
f1(x; t) = 〈n̂1(x)〉t = 〈n̂1(x)〉t
rel , 〈Ĥ int(r)〉t = 〈Ĥ int(r)〉t
rel ,
f (a; t) = 〈δ(â −a)〉t
= 〈δ(â−a)〉t
rel , (2.9)
where 〈. . .〉t =
∫
dΓN . . .̺(xN ; t) and 〈. . .〉t
rel
=
∫
dΓN . . .̺rel(xN ; t). To find the explicit form of non-equi-
librium distribution function ̺(xN ; t), we exclude the factor F (a; t) in a relevant distribution function
and thereafter, by means of self-consistent conditions (2.9), we have
̺rel
(
xN ; t
)
= ̺
kin-hyd
rel
(
xN ; t
) f (a; t)
W (a; t)
∣
∣
∣
∣
a=â
. (2.10)
Here,
W (a; t) =
∫
dΓN exp
[
−Φkin-hyd(t)−
∫
dxγ(x; t)n̂1(x)−
∫
drβ(r; t)Ĥ int(r)
]
f̂ (a)
=
∫
dΓN̺
kin-hyd
rel
(
xN ; t
)
f̂ (a) (2.11)
43705-4
BBGKY chain of kinetic equations, non-equilibrium statistical operator method
is the structure distribution function of hydrodynamic variables, which could be also considered as a
Jacobian for transition from f̂ (a) into space of collective variables nk, Jk, εk averaged with the “kinetic”
relevant distribution function
̺
kin-hyd
rel
(
xN ; t
)
= exp
[
−Φkin-hyd(t)−
∫
dxγ(x; t)n̂1(x)−
∫
drβ(r; t)Ĥ int(r)
]
,
Φ
kin-hyd(t) = ln
∫
dΓN exp
[
−
∫
dxγ(x; t)n̂1(x)−
∫
drβ(r; t)Ĥ int(r)
]
. (2.12)
Here, the entropy
S(t)=−
〈
ln̺rel
(
xN ; t
)〉t
rel =Φ(t)+
∫
dxγ(x; t)〈n̂1(x)〉t +
∫
drβ(r; t)〈Ĥ int(r)〉t
+
∫
da f (a; t) ln
f (a; t)
W (a; t)
. (2.13)
corresponds to the relevant distribution (2.10). In combination with the self-consistent conditions (2.9),
it can be considered as entropy of non-equilibrium state. In accordance with (2.6), in order to obtain the
explicit form of non-equilibrium distribution function, it is necessary to disclose the action of Liouville
operator on ̺rel(xN ; t) and the action of the Kawasaki-Gunton projection operator, which in our case has
the following structure according to (2.10):
Prel(t)̺′ = ̺rel
(
xN ; t
)
∫
dΓN̺′+
∫
dx
∂̺rel
(
xN ; t
)
∂〈n̂1(x)〉t
[
∫
dΓN n̂1(x)̺′−〈n̂1(x)〉t
∫
dΓN̺′
]
+
∫
dr
∂̺rel
(
xN ; t
)
∂〈Ĥ int(r)〉t
[
∫
dΓN Ĥ int(r)̺′−〈Ĥ int(r)〉t
∫
dΓN̺′
]
+
∫
da
∂̺rel
(
xN ; t
)
∂
[
f (a;t )
W (a;t )
]
1
W (a; t)
[
∫
dΓN f̂ (a)̺′− f (a; t)
∫
dΓN̺′
]
+
∫
dx
∫
da
∂̺rel
(
xN ; t
)
∂
[
f (a;t )
W (a;t )
]
f (a; t)
W (a; t)
∂ lnW (a; t)
∂〈n̂1(x)〉t
[
∫
dΓN n̂1(x)̺′−〈n̂1(x)〉t
∫
dΓN̺′
]
+
∫
dr
∫
da
∂̺rel
(
xN ; t
)
∂
[
f (a;t )
W (a;t )
]
f (a; t)
W (a; t)
∂ lnW (a; t)
∂〈Ĥ int(r)〉t
[
∫
dΓN Ĥ int(r)̺′
−〈Ĥ int(r)〉t
∫
dΓN̺′
]
. (2.14)
Next, we consider the action of Liouville operator on a relevant distribution function (2.10):
iLN̺rel
(
xN ; t
)
=−
∫
dxγ(x; t) ˙̂n1(x)̺rel
(
xN ; t
)
−
∫
drβ(r; t) ˙̂H int(r)̺rel
(
xN ; t
)
+
[
iLN
f (a; t)
W (a; t)
∣
∣
∣
∣
a=â
]
̺
kin-hyd
rel
(
xN ; t
)
, (2.15)
where ˙̂n1(x) = iLN n̂1(x), ˙̂H int(r)= iLN Ĥ int(r). Having used thereafter the relation
iLN f̂ (a) = iLN f̂ (nk,Jk,εk) =
∑
k
[
∂
∂nk
f̂(a) ˙̂nk +
∂
∂Jk
f̂(a)˙̂Jk +
∂
∂εk
f̂(a)˙̂εk
]
,
where ˙̂nk = iLN n̂k ,
˙̂Jk = iLN Ĵk , ˙̂εk = iLN ε̂k , the last expression in (2.15) can be rewritten in the following
form:
[
iLN
f (a; t)
W (a; t)
∣
∣
∣
∣
a=â
]
̺
kin-hyd
rel
(
xN ; t
)
=
∫
da
∑
k
{
˙̂nkW (a; t)
[
∂
∂nk
f (a; t)
W (a; t)
]
+ ˙̂JkW (a; t)
[
∂
∂Jk
f (a; t)
W (a; t)
]
+ ˙̂εkW (a; t)
[
∂
∂εk
f (a; t)
W (a; t)
]}
̺L
(
xN ; t
)
. (2.16)
43705-5
I.R. Yukhnovskii, P.A. Hlushak, M.V. Tokarchuk
Here, we introduced a new relevant distribution function ̺L(xN , a; t) with the microscopic distribution
of large-scale collective variables
̺L
(
xN , a; t
)
= ̺
kin-hyd
rel
(
xN ; t
) f̂ (a)
W (a; t)
. (2.17)
This relevant distribution function is connected with ̺rel(xN ; t) by the relation
̺rel
(
xN ; t
)
=
∫
da f (a; t)̺L
(
xN , a; t
)
(2.18)
and is obviously normalized to unity
∫
dΓN̺L
(
xN ; t
)
= 1. (2.19)
Using the relation (2.17), the average values with a relevant distribution are conveniently represented in
the following form:
〈. . .〉t
rel =
∫
da〈. . .〉t
L f (a; t), 〈. . .〉t
L =
∫
dΓN . . .̺L(xN ; t). (2.20)
Now, in accordance with (2.16) and (2.17) we can rewrite the action of the Liouville operator on ̺rel(xN ; t)
as follows:
iLN̺rel
(
xN ; t
)
=−
∫
da
∫
dxγ(x; t) ˙̂n1(x)̺L
(
xN , a; t
)
f (a; t)−
∫
da
∫
drβ(r; t) ˙̂H int(r)̺L
(
xN , a; t
)
f (a; t)
+
∫
da
∑
k
[
˙̂nkW (a; t)
∂
∂nk
f (a; t)
W (a; t)
+W (a; t)˙̂Jk ·
∂
∂Jk
f (a; t)
W (a; t)
+ ˙̂εkW (a; t)
∂
∂εk
f (a; t)
W (a; t)
]
̺L
(
xN , a; t
)
. (2.21)
Substituting this expression into (2.6), one obtains, for non-equilibrium distribution function, the follow-
ing result:
̺
(
xN ; t
)
=
∫
da f (a; t)̺L
(
xN , a; t
)
+
∫
da
∫
dr
t
∫
−∞
dt ′eǫ(t ′−t )Trel(t , t ′)
[
1−Prel(t ′)
] ˙̂H int(r)̺L
(
xN ; t
)
f (a; t ′)β(r; t ′)
−
∫
da
∫
dx
t
∫
−∞
dt ′eǫ(t ′−t )Trel(t , t ′)
[
1−Prel(t ′)
]
˙̂n1(x)̺L
(
xN , a; t ′
)
f (a; t ′)γ(x; t ′)
−
∫
da
∑
k
t
∫
−∞
dt ′eǫ(t ′−t )Trel(t , t ′)
[
1−Prel(t ′)
]
[
˙̂nkW (a; t ′)
∂
∂nk
f (a; t ′)
W (a; t ′)
+W (a; t ′)˙̂Jk ·
∂
∂Jk
f (a; t ′)
W (a; t ′)
+ ˙̂εkW (a; t ′)
∂
∂εk
f (a; t ′)
W (a; t ′)
]
̺L
(
xN , a; t ′
)
(2.22)
and the corresponding generalized transport equations:
(
∂
∂t
+
p
m
·
∂
∂r
)
f1(x; t)−
∫
dx′ ∂
∂r
Φ(|r−r′|) ·
(
∂
∂p
−
∂
∂p′
)
g2(x, x′; t)
=−
∫
dr′
∫
da
t
∫
−∞
dt ′eǫ(t ′−t )φnH (x,r′, a; t , t ′) f (a; t ′)β(r′; t ′)
−
∫
dx′
∫
da
t
∫
−∞
dt ′eǫ(t ′−t )φnn(x, x′, a; t , t ′) f (a; t ′)γ(x′; t ′)
−
∑
k
∫
da
t
∫
−∞
dt ′eǫ(t ′−t )
[
φn j (x,k, a; t , t ′) ·
∂
∂Jk
+φnε(x,k, a; t , t ′)
∂
∂εk
]
f (a; t ′)
W (a; t ′)
, (2.23)
43705-6
BBGKY chain of kinetic equations, non-equilibrium statistical operator method
∂
∂t
〈Ĥ int(r)〉t
= 〈
˙̂H int(r)〉t
rel−
∫
dr′
∫
da
t
∫
−∞
dt ′eǫ(t ′−t )φH H (r,r′, a; t , t ′) f (a; t ′)β(r′; t ′)
−
∫
dx′
∫
da
t
∫
−∞
dt ′eǫ(t ′−t )φHn (r, x′, a; t , t ′) f (a; t ′)γ(x′; t ′)
−
∑
k
∫
da
t
∫
−∞
dt ′eǫ(t ′−t )
[
φH j (r,k, a; t , t ′) ·
∂
∂Jk
+φHε(r,k, a; t , t ′)
∂
∂εk
]
f (a; t ′)
W (a; t ′)
, (2.24)
∂
∂t
f (a; t)=
∑
k
[
∂
∂nk
vn(a; t)+
∂
∂Jk
·v j (a; t)+
∂
∂εk
vε(a; t)
]
f (a; t)
=
∑
k
∂
∂Jk
·
∫
dr′
∫
da′
t
∫
−∞
dt ′eǫ(t ′−t )φ j H (r′,k, a, a′; t , t ′) f (a; t ′)β(r′; t ′)
−
∑
k
∂
∂εk
∫
dr′
∫
da′
t
∫
−∞
dt ′eǫ(t ′−t )φεH (r′,k, a, a′; t , t ′) f (a; t ′)β(r′; t ′)
+
∑
k
∂
∂Jk
·
∫
dx′
∫
da′
t
∫
−∞
dt ′eǫ(t ′−t )φ j n(x′,k, a, a′; t , t ′) f (a; t ′)γ(x′; t ′)
−
∑
k
∂
∂εk
∫
dx′
∫
da′
t
∫
−∞
dt ′eǫ(t ′−t )φεn(x′,k, a, a′; t , t ′) f (a; t ′)γ(x′; t ′)
+
∑
k,q
∫
da′
t
∫
−∞
dt ′eǫ(t ′−t ) ∂
∂Jk
·φ j j (k,q, a, a′; t , t ′) ·
∂
∂Jq
f (a; t ′)
W (a; t ′)
+
∑
k,q
∫
da′
t
∫
−∞
dt ′eǫ(t ′−t ) ∂
∂εk
φεε(k,q, a, a′; t , t ′)
∂
∂εq
f (a; t ′)
W (a; t ′)
+
∑
k,q
∫
da′
t
∫
−∞
dt ′eǫ(t ′−t )
[
∂
∂Jk
·φ jε(k,q, a, a′; t , t ′)
∂
∂εq
+
∂
∂εk
φε j (k,q, a, a′; t , t ′) ·
∂
∂Jq
]
f (a; t ′)
W (a; t ′)
.
(2.25)
The generalized transport equations (2.23), (2.24) include a relevant two-particle distribution function of
particles g2(x, x′; t) :
g2(x, x′; t) =
∫
dΓN−2̺rel
(
xN ; t
)
= 〈n̂1(x)n̂1(x′)〉t
rel = 〈Ĝ(x, x′)〉t
rel =
∫
dagL
2 (x, x′; a; t) f (a; t), (2.26)
where Ĝ(x, x′) = n̂1(x)n̂1(x′), and gL
2 (x, x′; a; t) =
∫
dΓN−2̺L(xN ; a; t) is the two-particle relevant distribu-
tion function of large-scale collective variables. The generalized transport kernels
φαβ(t , t ′) = 〈Iα(t)Trel(t , t ′)Iβ(t ′)〉t ′
L , α,β= {n, H , j,ε}, (2.27)
that describe non-Markovian kinetic and hydrodynamic processes, are non-equilibrium correlation func-
tions of generalized fluxes Iα, Iβ:
În (x; t) = [1−P (t)] ˙̂n1(x), ÎH (r; t) = [1−P (t)] ˙̂H int(r), (2.28)
Îj(k; t) = [1−P (t)]˙̂Jk , Îε(k;t) = [1−P(t)]˙̂εk . (2.29)
Here, P (t) is the generalized Mori operator related to Kawasaki-Gunton projection operator Prel(t) by the
following relation
Prel(t)a(x)̺rel
(
xN ; t
)
= ̺rel
(
xN ; t
)
P (t)a(x).
43705-7
I.R. Yukhnovskii, P.A. Hlushak, M.V. Tokarchuk
It should be emphasized that in (2.26) the averages are calculated with a distribution function ̺L(xN , a; t)
(2.20), so that the transport kernels are functions of collective variables ak. In equation (2.25), the func-
tions (called hydrodynamic velocities) vn,k(a; t), v j ,k(a; t), vε,k(a; t) represent the fluxes in the space of
collective variables and are defined as:
vn(a; t) =
∫
dΓN
˙̂nk̺L
(
xN , a; t
)
= 〈 ˙̂nk〉
t
L,
v j (a; t)=
∫
dΓN
˙̂Jk̺L
(
xN , a; t
)
= 〈˙̂Jk〉
t
L,
vε(a; t) =
∫
dΓN
˙̂εk̺L
(
xN , a; t
)
= 〈 ˙̂εk〉
t
L. (2.30)
The presented system of transport equations provides a consistent description of kinetic and hydrody-
namic processes of classical fluids which take into account long-living fluctuations.
The system of transport equations (2.23)–(2.25) is not closed due to Lagrange parameters γ(x; t),
β(r′; t ′), which are determined from the corresponding self-consistent conditions.
To describe the kinetics of heterophase fluctuations, as discussed in the Introduction, in addition to
the equation for non-equilibrium one-particle distribution function it is important to consider the equa-
tions for higher non-equilibrium distribution functions of groups of interacting particles. The kinetics
of these phases is described by kinetic equations for higher non-equilibrium distribution functions of
finite number of particles in heterophase formations. Therefore, to describe these heterophase kinetic
processes we must supplement this system of transport equations with the kinetic equation f2(x, x′; t),
and hence for fs (x1 . . . xs ; t), s < N :
∂
∂t
f2(x, x′; t)+ iL2 f2(x, x′; t)−
∫
dx′′[iL(13)+ iL(23)] f3 (x, x′, x′′; t)
= iL2∆ f2(x, x′; t)−
∫
d x′′[iL(13)+ iL(23)]∆ f3 (x, x′, x′′; t)
+
∫
dx′′
∫
da
t
∫
−∞
dt ′eǫ(t ′−t )φGn (x, x′, x′′, a; t , t ′) f (a; t ′)γ(x′′; t ′)
−
∫
dr′′
∫
da
t
∫
−∞
dt ′eǫ(t ′−t )φG H (x, x′,r′′, a; t , t ′) f (a; t ′)β(r′′; t ′)
−
∑
k
∫
da
t
∫
−∞
dt ′eǫ(t ′−t )
[
φG j (x, x′,k, a; t , t ′) ·
∂
∂Jk
+ φGε(x, x′,k, a; t , t ′)
∂
∂εk
]
f (a; t ′)
W (a; t ′)
, (2.31)
∂
∂t
fs (xs ; t)+ iLs fs (xs ; t)−
∑
j
1
s!
∫
dxs+1iL( j , s +1) fs+1(xs , xs+1; t)
= iLs∆ fs (xs ; t)−
∑
j
1
s!
∫
d xs+1iL( j , s +1)∆ fs+1(xs , xs+1; t)
+
∫
dx′′
∫
da
t
∫
−∞
dt ′eǫ(t ′−t )φGs n (xs , x′′, a; t , t ′) f (a; t ′)γ(x′′; t ′)
−
∫
dr′′
∫
da
t
∫
−∞
dt ′eǫ(t ′−t )φGs H (xs ,r′′, a; t , t ′) f (a; t ′)β(r′′; t ′)
−
∑
k
∫
da
t
∫
−∞
dt ′eǫ(t ′−t )
[
φGs j (xs ,k, a; t , t ′) ·
∂
∂Jk
+φGsε(xs ,k, a; t , t ′)
∂
∂εk
]
f (a; t ′)
W (a; t ′)
, (2.32)
where
∆ f2(x, x′; t) = f2(x, x′; t)− g2(x, x′; t), ∆ fs (xs ; t) = fs (xs ; t)− gs (xs ; t).
43705-8
BBGKY chain of kinetic equations, non-equilibrium statistical operator method
In equation (2.31), the two-particle Liouville operator
iL2 = iL0(x)+ i L0(x′)+ iL(x, x′)
was introduced. It contains a one-particle operator
iL0(x) =
p
m
·
∂
∂r
, x = {r,p},
as well as a potential part
iL(x, x′) =
∂
∂r
Φ(|r−r′|) ·
(
∂
∂p
−
∂
∂p′
)
.
Accordingly, in equation (2.32), iLs is the s-particle Liouville operator,
gs(x1 . . . xs ; t) = 〈Ĝs(x1 . . . xs )〉t
rel =
∫
dagL
s (x1 . . . xs ; a; t) f (a; t),
where
gL
s (x1 . . . xs ; a; t) =
∫
dΓN Ĝs(x1 . . . xs )̺L
(
xN ; a; t
)
is the s-particle relevant distribution function of large-scale variables and Ĝs (xs ) = n̂1(x1) . . . n̂1(xs ).
Thus, we obtained a system of equations for non-equilibrium one-, two-, s-particle distribution func-
tions which take into account nonlinear hydrodynamic fluctuations.
Now, we discuss the equation (2.25) that is of Fokker-Planck type for a non-equilibrium distribution
function of collective variables which take into account the kinetic processes. The transport kernel in this
equation φnn(x, x′; t , t ′) describes a dissipation of kinetic processes, while the kernels φn j (x,k, a; t , t ′),
φnε(x,k, a; t , t ′), φ j n(x,k, a; t , t ′), φεn(x,k, a; t , t ′) describe a dissipation of correlations between kinetic
and hydrodynamic processes. To uncover amore detailed structure of transport kernelsφnn(x; x′, a; t , t ′),
φGn (x; x′, x′′, a; t , t ′) we consider the action of Liouville operator on n̂1(x) and Ĝ(x, x′):
iLN n̂1(x) =−
∂
∂r
·
1
m
ĵ(r,p)+
∂
∂p
· F̂(r,p), (2.33)
iLN Ĝ(x, x′) =−
∂
∂r
·
1
m
ĵ(r,p)n̂1(x′)− n̂1(x)
∂
∂r′
·
1
m
ĵ(r′,p′)+
∂
∂p
· F̂(r,p)n̂1(x′)+ n̂1(x)
∂
∂p′
· F̂(r′,p′), (2.34)
where
ĵ(r,p) =
N
∑
j=1
p jδ(r−r j )δ(p−p j ) (2.35)
is the microscopic density of the momentum vector in coordinate-momentum space,
F̂(r,p) =
∑
l, j
∂
∂r j
Φ(|r j −rl |)δ(r−r j )δ(p−p j ) (2.36)
is the microscopic density of force vector in coordinate-momentum space. Taking into account the equa-
tions (2.33)–(2.36) for the kinetic transport kernels, we obtain:
φnn(x; x′, a; t , t ′) =−
[
∂
∂r
·D j j (x, x′, a; t , t ′) ·
∂
∂r′
−
∂
∂p
·DF j (x, x′, a; t , t ′) ·
∂
∂r′
−
∂
∂r
·D j F (x, x′, a; t , t ′) ·
∂
∂p′
+
∂
∂p
·DF F (x, x′, a; t , t ′) ·
∂
∂p′
]
, (2.37)
where
D j j (x, x′, a; t , t ′)=
∫
dΓN ĵ(x)T (t , t ′)[1−P (t ′)]ĵ(x′)ρL
(
xN ; t ′
)
,
DF F (x, x′, a; t , t ′) =
∫
dΓN F̂(x)T (t , t ′)[1−P (t ′)]F̂(x′)ρL
(
xN ; t ′
)
43705-9
I.R. Yukhnovskii, P.A. Hlushak, M.V. Tokarchuk
are the generalized diffusion and the particle friction coefficients in the coordinate-momentum space.
Moreover,
∫
dp
∫
dp′D j j (x, x′; t , t ′) = D j j (r,r′; t , t ′),
∫
dp
∫
dp′DF F (x, x′; t , t ′) = DF F (r,r′; t , t ′)
are the generalized coefficients of diffusion and friction. Similarly, we obtain the expression for the trans-
port kernel φGn (x; x′, x′′; t , t ′):
φGn (x; x′, x′′, a; t , t ′) =−
[
∂
∂r
·D j j n(x, x′, x′′, a; t , t ′) ·
∂
∂r′
+
∂
∂r
·D j n j (x, x′, x′′, a; t , t ′) ·
∂
∂r′′
−
∂
∂p
·DF j n(x, x′, x′′, a; t , t ′) ·
∂
∂r′
−
∂
∂p
·DF n j (x, x′, x′′, a; t , t ′) ·
∂
∂r′′
−
∂
∂r
·D j F n(x, x′, x′′, a; t , t ′) ·
∂
∂p′
−
∂
∂r
·D j nF (x, x′, x′′, a; t , t ′) ·
∂
∂p′′
+
∂
∂p
·DF F n(x, x′, x′′, a; t , t ′) ·
∂
∂p′
+
∂
∂p
·DF nF (x, x′, x′′, a; t , t ′) ·
∂
∂p′′
]
. (2.38)
It is remarkable that the expression
∫
dx′
∫
da
t
∫
−∞
dt ′eǫ(t ′−t )φnn(x, x′, a; t , t ′) f (a; t ′)γ(x′; t ′)
in equation (2.23) with (2.37) is the generalized collision integral of Fokker-Planck type in the coordinate-
momentum space. That is, taking into account (2.26) and (2.37), the kinetic equation (2.23) can be written
as follows:
(
∂
∂t
+
p
m
∂
∂r
)
f1(x; t)−
∫
dx′
∫
da
∂
∂r
Φ(|r−r′|)
(
∂
∂p
−
∂
∂p′
)
g l
2(x, x′, a; t) f (a; t)
=−
∫
dr′
∫
da
t
∫
−∞
dt ′eǫ(t ′−t )φnH (x,r′, a; t , t ′) f (a; t ′)β(r′; t ′)
−
∫
dx′
∫
da
t
∫
−∞
dt ′eǫ(t ′−t ) ∂
∂r
·D j j (x, x′, a; t , t ′) ·
∂
∂r′
γ(x′; t ′) f (a; t ′)
+
∫
dx′
∫
da
t
∫
−∞
dt ′eǫ(t ′−t )
[
∂
∂p
·DF j (x, x′, a; t , t ′) ·
∂
∂r′
+
∂
∂r
·D j F (x, x′, a; t , t ′) ·
∂
∂p′
−
∂
∂p
·DF F (x, x′, a; t , t ′) ·
∂
∂p′
]
γ(x′; t ′) f (a; t ′)
−
∑
k
∫
da
t
∫
−∞
dt ′eǫ(t ′−t )
[
φn j (x,k, a; t , t ′) ·
∂
∂Jk
+φnε(x,k, a; t , t ′)
∂
∂εk
]
f (a; t ′)
W (a; t ′)
. (2.39)
In the equation (2.25), the quantities φ j j (k,q, a, a′; t , t ′), φ jε(k,q, a, a′; t , t ′), φε j (k,q, a, a′; t , t ′),
φεε(k,q, a, a′; t , t ′) correspond to the dissipative processes connected with the correlations between vis-
cous and heat hydrodynamic processes. Note that the equations (2.31), (2.32) have the structure similar
to the equation (2.39) but with more complex many-particle transport kernels. Thus, we obtained a sys-
tem of equations for non-equilibrium one-, two-, s-particle distribution functions on collision integral of
Fokker-Planck type which take into account nonlinear hydrodynamic fluctuations.
The set of equations (2.23), (2.25), (2.31), (2.32) allow for two limiting cases. The first, if the description
of non-equilibrium processes does not take into account nonlinear hydrodynamic fluctuations, we will
obtain the system of equations for a consistent description of kinetics and hydrodynamics obtained in
43705-10
BBGKY chain of kinetic equations, non-equilibrium statistical operator method
papers [39, 42, 43]. These systems can be written as follows:
(
∂
∂t
+
p
m
·
∂
∂r
)
f1(x; t)−
∫
dx′ ∂
∂r
Φ(|r−r′|) ·
(
∂
∂p
−
∂
∂p′
)
g2(x, x′; t)
=−
∫
dr′
t
∫
−∞
dt ′eǫ(t ′−t )φnH (x,r′; t , t ′)β(r′; t ′)−
∫
dx′
t
∫
−∞
dt ′eǫ(t ′−t )φnn(x, x′; t , t ′)γ(x′; t ′), (2.40)
∂
∂t
〈Ĥ int(r)〉t = 〈
˙̂H int(r)〉t
rel−
∫
dr′
t
∫
−∞
dt ′eǫ(t ′−t )φH H (r,r′; t , t ′)β(r′; t ′)
−
∫
dx′
t
∫
−∞
dt ′eǫ(t ′−t )φHn(r, x′; t , t ′)γ(x′; t ′), (2.41)
where the transport kernels φnn(x, x′; t , t ′), φnH (x,r′; t , t ′), φHn(r, x′; t , t ′), φH H (r,r′; t , t ′) are given by
expression (2.27). An averaging in these kernels is performed using the relevant statistical operator
̺
kin-hyd
rel
(xN ; t). If in equations (2.40), (2.41) we do not consider the contribution from the potential en-
ergy of interaction, which is true for a dilute gas, then we shall obtain a generalized kinetic equation for
a non-equilibrium one-particle distribution function [44]:
(
∂
∂t
+
p
m
·
∂
∂r
)
f1(x; t)−
∫
dx′ ∂
∂r
Φ(|r−r′|)
(
∂
∂p
−
∂
∂p′
)
g2(x, x′; t)
=
∫
dx′
t
∫
−∞
dt ′eǫ(t ′−t )φnn(x, x′; t , t ′)γ(x′; t ′). (2.42)
The second, if we do not take into account the kinetic processes, then we shall obtain generalized
(non-Markov) Fokker–Planck equation for non-equilibrium distribution function of collective variables,
which can be obtained using the method of Zwanzig projection operators or using the method of Zubarev
non-equilibrium statistical operator [45]:
∂
∂t
f (a; t)=
∑
k
[
∂
∂nk
vn(a; t)+
∂
∂Jk
·v j (a; t)+
∂
∂εk
vε(a; t)
]
f (a; t)
=
∑
k,q
∫
da′
t
∫
−∞
dt ′eǫ(t ′−t ) ∂
∂Jk
·φ j j (k,q, a, a′; t , t ′) ·
∂
∂Jq
f (a; t ′)
W (a; t ′)
+
∑
k,q
∫
da′
t
∫
−∞
dt ′eǫ(t ′−t ) ∂
∂εk
φεε(k,q, a, a′; t , t ′)
∂
∂εq
f (a; t ′)
W (a; t ′)
+
∑
k,q
∫
da′
t
∫
−∞
dt ′eǫ(t ′−t )
×
[
∂
∂Jk
·φ jε(k,q, a, a′; t , t ′)
∂
∂εq
+
∂
∂εk
φε j (k,q, a, a′; t , t ′) ·
∂
∂Jq
]
f (a; t ′)
W (a; t ′)
. (2.43)
One of the main problems for the analysis of transport equations (2.23)–(2.25) and transport kernels
are the calculations of the structure functions W (a; t) of collective variables and of hydrodynamic veloc-
ities vn(a; t), v j (a; t), vε(a; t). We consider one of these ways in the next section.
3. Calculation of structure function W (a; t ) and hydrodynamical veloci-
ties vα(a; t ) by the collective variable method
In the Kawasaki theory [46] of non-linear fluctuations, the structure function is approximated by a
Gaussian dependence on collective variables. In this case, as it can be seen, the hydrodynamic velocities
43705-11
I.R. Yukhnovskii, P.A. Hlushak, M.V. Tokarchuk
vl ,k(a; t), l = n, j ,ε are the linear function of a. Another approach for the calculation of hydrodynamical
velocities vl ,k(a; t) was proposed on the basis of local thermodynamics [45]. The resulting expressions
are obviously valid at low frequencies and for small values of the wave vector, when the conditions of
the local thermodynamics are valid. Structure function W (a; t) and hydrodynamical velocities vl ,k(a; t)
in a case of study of hydrodynamic fluctuations were calculated in [47, 48] using the method of collective
variables [49]. The basic idea of this approach is that the structure function W (a; t) and hydrodynamic
velocities vl ,k(a; t) can be calculated in approximations higher than Gaussian. Next, we use the method
of collective variables [35, 47–49] to calculate the structure function W (a; t) and hydrodynamic velocities
vl ,k(a; t). Further, the collective variable method is used to calculate the structure function W (a; t) and
hydrodynamic velocities vl ,k(a; t). We considered earlier the case when the interactions between parti-
cles on small distances were described by short-range potentialΦsh(|rl j |), in particular, by the potential of
hard spheres. At long distances, the interactions between particles are described by the long-range poten-
tial Φlong(|rl j |). Accordingly, we define the short- and long-acting parts of the interaction of the Liouville
operator:
iLN = iL0
N + T̂N + iL
long
N
,
where iL0
N
is the Liouville operator of N non-interacting particles, T̂N is the scattering operator of hard
sphere system and iL
long
N
is the potential part of Liouville operator with long-range interaction between
particles.
First, we calculate the structure function W (a; t) for collective variables. To do this, we use the inte-
gral representation for δ-functions:
f̂ (a) =
∫
dωexp
[
− iπ
∑
l ,k
ωl ,k(âl ,k −al ,k)
]
, l = n, j,ε. (3.1)
Next, using a cumulant expansion [35, 48] for W (a; t), one obtains:
W (a; t) =
∫
dΓN̺
kin-hyd
rel
(
xN ; t
)
f̂ (a) =
∫
dωexp
[
− iπ
∑
l ,k
ωl ,k āl ,k −
1
2V 2
∑
q
∑
k
β−q(t)ν(k)(nq+kn−k −nq)
−
π2
2
∑
l1,l2
∑
k1 ,k2
M
l1,l2
2 (k1,k2; t)ωl1,k1
ωl2 ,k2
]
exp
[
∑
nÊ3
Dn(ω; t)
]
, (3.2)
where
āl ,k = al ,k −〈âl ,k〉
t
kin-sh , dω=
∏
l ,k
dωr
l ,kdωs
l ,k , ωl ,k =ωr
l ,k − iωs
l ,k , ωl ,−k =ω∗
l ,k ,
Dn(ω; t) =
(−iπ)n
n!
∑
l1 ,...,ln
∑
k1,...,kn
M
l1,...,ln
n (k1, . . . ,kn ; t)ωl1 ,k1
. . .ωln ,kn
, (3.3)
M
l1,...,ln
n (k1, . . . ,kn ; t) = 〈âl1,k1
. . . âln ,kn
〉
t ,c
kin-sh
(3.4)
are the non-equilibrium cumulant averages in approximations of the n-order, which are calculated using
distribution ̺kin-sh
rel
(xN ; t) for hard sphere model:
̺kin-sh
rel
(
xN ; t
)
= exp
[
−Φ
kin-sh(t)−
∫
drβ(r; t)Ĥ sh(r)−
∫
dxγ(x; t)n̂1(x)
]
. (3.5)
In (3.4) superscript “c” means the cumulant averages. It should be noted that in (3.2) we shared the con-
tributions from short- and long-range interactions. The short-range interactions are take into account in
a relevant distribution (3.5) (which can be considered as a base distribution) and long-range interactions
are presented through collective variables
∫
drβ(r; t)Ĥ long(r) =
1
2V 2
∑
q
∑
k
β−q(t)ν(k)
(
nq+kn−k −nq
)
.
43705-12
BBGKY chain of kinetic equations, non-equilibrium statistical operator method
We present the structure function W (a; t) for further calculations in the following form:
W (a; t) =
∫
dωexp
[
− iπ
∑
l ,k
ωl ,k āl ,k −
1
2V 2
∑
q
∑
k
β−q(t)ν(k)
(
nq+kn−k −nq
)
−
π2
2
∑
l1,l2
∑
k1,k2
M
l1,l2
2 (k1,k2; t)ωl1,k1
ωl2,k2
](
1+B +
1
2!
B2
+
1
3!
B3
+ . . .+
1
n!
Bn
+ . . .
)
, (3.6)
where B =
∑
nÊ3 Dn (ω; t). If in series of exponent (3.6), namely, exp
[
∑
nÊ3 Dn (ω; t)
]
, one retains only the
first term equal to unity, one will obtain the Gaussian approximation for W (a; t):
W G(a; t)=
∫
dωexp
[
iπ
∑
l ,k
ωl ,kāl ,k −
1
2V 2
∑
q
∑
k
β−q(t)ν(k)
(
nq+kn−k −nq
)
−
π2
2
∑
l1,l2
∑
k1,k2
M
l1,l2
2 (k1,k2; t)ωl1,k1
ωl2,k2
]
, (3.7)
whereM
l1,l2
2 (k1,k2; t) are the matrix elements of non-equilibrium correlation functions:
M2(k1,k2; t) =
∣
∣
∣
∣
∣
∣
∣
〈n̂n̂〉c
kin-sh
〈n̂Ĵ〉c
kin-sh
〈n̂ε̂〉c
kin-sh
〈Ĵn̂〉c
kin-sh
〈ĴĴ〉c
kin-sh
〈Ĵε̂〉c
kin-sh
〈ε̂n̂〉c
kin-sh
〈ε̂Ĵ〉c
kin-sh
〈ε̂ε̂〉c
kin-sh
∣
∣
∣
∣
∣
∣
∣
k1,k2
, (3.8)
and, for example, the non-equilibrium cumulant average
〈n̂kn̂−k〉
t ,c
kin-sh
= 〈n̂kn̂−k〉
t
kin-sh−〈n̂k〉
t
kin-sh〈n̂−k〉
t
kin-sh . (3.9)
For integrating over dω in (3.7), we should transform the quadratic form in an exponential expression
into a diagonal form with respect to ωl ,k . To this end, it is necessary to find the eigenvalues of the matrix
(3.8) by solving the equation
det
∣
∣M̃2(k1,k2; t)− Ẽ (k; t)
∣
∣= 0, (3.10)
Ẽ (k; t) is the diagonal matrix. Further, the expression (3.7) can be written as follows:
W G(a; t) =
∫
dω̃ detW̃ exp
[
− iπ
∑
l ,k
ãlkω̃lk −
1
2V 2
∑
q
∑
k
β−q(t)ν(k)
(
nq+kn−k −nq
)
−
π2
2
∑
l
∑
k
El (k; t)ω̃lkω̃l ,−k
]
, (3.11)
where new variables ãlk , ω̃lk are connected with the old variables by the ratio:
ãnk =
∑
l
ālkωln , ωlk =
3
∑
m=1
ωlmω̃mk ,
and ωlm are matrix elements:
W̃ =
∣
∣
∣
∣
∣
∣
∣
ω11 . . . ω15
...
. . .
...
ω51 . . . ω55
∣
∣
∣
∣
∣
∣
∣
(k;t )
.
Integrand in (3.11) is a quadratic function ω̃nk and after integrating over dωnk we will obtain the follow-
ing structure function in Gaussian approximation W G(a; t):
W G(a; t) = exp
[
−
1
2
∑
l ,k
E−1
l (k; t)ãlkãl ,−k −
1
2V 2
∑
q
∑
k
β−q(t)ν(k)
(
nq+kn−k −nq
)
]
×exp
[
−
1
2
∑
k
ln π det Ẽ(k; t)
]
exp
[
∑
k
ln detW̃ (k; t)
]
, (3.12)
43705-13
I.R. Yukhnovskii, P.A. Hlushak, M.V. Tokarchuk
or through variables ālk:
W G(a; t) = Z (t) exp
[
−
1
2
∑
l ,k
Ēl (k; t)ālkāl ,−k −
1
2V 2
∑
q
∑
k
β−q(t)ν(k)
(
nq+kn−k −nq
)
]
, (3.13)
where
Ēl (k; t) =
∑
l ′
ωl l ′E
−1
l ′ (k; t)ωl ′l ,
Z (t)= exp
[
−
1
2
∑
k
ln π det Ẽ(k; t)
]
exp
[
∑
k
ln detW̃ (k; t)
]
.
The structure function W G(a; t) provides a possibility to calculate (3.2) in higher approximations over
Gaussian moments [35, 48]:
W (a; t) =W G(a; t)exp
[
∑
nÊ3
〈D̃n(a; t)〉G
]
, (3.14)
where one presents 〈D̃n(a; t)〉G approximately as:
〈D̃3(a; t)〉G = 〈D̄3(a; t)〉G ,
〈D̃4(a; t)〉G = 〈D̄4(a; t)〉G ,
〈D̃6(a; t)〉G = 〈D̄6(a; t)〉G−
1
2
〈D̄3(a; t)〉2
G ,
〈D̃8(a; t)〉G = 〈D̄8(a; t)〉G−〈D̄3(a; t)〉G〈D̄5(a; t)〉G−
1
2
〈D̄4(a; t)〉2
G ,
〈D̃n(a; t)〉G =
1
W G(a; t)
∑
l1 ,...,ln
∑
k1,...,kn
M̄
l1,...,ln
n (k1, . . . ,kn ; t)
1
(iπ)n
δn
δāl1 ,k1
. . .δāln ,kn
W G(a; t).
〈D̃n(a; t)〉G are the renormalized non-equilibrium cumulant averages of the order n for the variables ālk .
In expression (3.14), the summands are with only even degrees over a since all odd Gaussian moments
vanish.
The method of calculation of the structure function W (a; t) can be used for approximate calculations
of hydrodynamic velocities vl ,k(a; t). We present a general formula of velocities consistent with (2.30) in
the following form:
vl ,k(a; t) =
∫
dΓN
˙̂al ,k̺
kin-hyd
rel
(
xN ; t
)
f̂ (a) (3.15)
and introduce the function W (a,λ; t):
W (a,λ; t) =
∫
dΓN exp
(
− iπ
∑
l ,k
λl ,k
˙̂al ,k
)
̺
kin-hyd
rel
(
xN ; t
)
f̂ (a), (3.16)
so that
vl ,k(a; t) =
∂
∂(−iπλl ,k)
lnW (a,λ; t)
∣
∣
∣
λl ,k=0
. (3.17)
We calculate the function W (a,λ; t) using the preliminary results of the calculation of the structural
function W (a; t), and rewrite W (a,λ; t) as:
W (a,λ; t) =
∫
dΓN
∫
dωexp
(
− iπ
∑
l ,k
λl ,k
˙̂al ,k
)
exp
[
− iπ
∑
l ,k
ωl ,k
(
âl ,k −al ,k
)
]
̺
kin-hyd
rel
(
xN ; t
)
. (3.18)
Now, we carry out an averaging in (3.18) using the following cumulant expansion:
W (a,λ; t) =
∫
dωexp
{
− iπ
∑
l ,k
ωl ,k āl ,k −
1
2V 2
∑
q
∑
k
β−q(t)ν(k)
(
nq+kn−k −nq
)
+
∑
nÊ1
[
Dn(ω; t)+Dn(λ; t)+Dn (ω,λ; t)
]
}
, (3.19)
43705-14
BBGKY chain of kinetic equations, non-equilibrium statistical operator method
where
Dn(ω; t) =
(−iπ)n
n!
∑
l1 ,...,ln
∑
k1,...,kn
M
l1,...,ln
n (k1, . . . ,kn ; t)ωl1 ,k1
. . .ωln ,kn
,
Dn(λ; t) =
(−iπ)n
n!
∑
l1 ,...,ln
∑
k1,...,kn
M
(1)l1,...,ln
n (k1, . . . ,kn ; t)λl1 ,k1
. . .λln ,kn
,
Dn (ω,λ; t) =
(−iπ)n
n!
∑
l1 ,...,ln
∑
k1,...,kn
M
(2)l1,...,ln
n (k1, . . . ,kn ; t)ωl1,k1
. . .ωln−1 ,kn−1
. . .λln ,kn
,
with the cumulants of the following structure:
M
l1,...,ln
n (k1, . . . ,kn ; t) = 〈âl1,k1
, . . . , âln ,kn
〉
t ,c
kin-sh
,
M
(1)l1,...,ln
n (k1, . . . ,kn ; t) = 〈 ˙̂al1 ,k1
, . . . , ˙̂aln ,kn
〉
t ,c
kin-sh
,
M
(2)l1,...,ln
n (k1, . . . ,kn ; t) = n
[
(n− j )+ ( j −n+1)δl1 ,...,ln−1
]
×〈âl1,k1
, . . . , âln− j ,kn− j
, . . . , ˙̂aln− j+1 ,kn− j+1
, . . . , ˙̂aln ,kn
〉
t ,c
kin-sh
.
First, we consider a Gaussian approximation for W (a,λ; t), namely in the exponent of an integrand
we leave only the summands with n = 2 and linear over λl ,k:
W G(a,λ; t) =
∫
dωexp
[
iπ
∑
l ,k
ωl ,k āl ,k − iπ
∑
l ,k
〈 ˙̂al ,k〉
t ,c
kin-hyd
λl ,k −
1
2V 2
∑
q
∑
k
β−q(t)ν(k)
(
nq+kn−k −nq
)
−
π2
2
∑
l1,l2
∑
k1,k2
M
l1,l2
2 (k1,k2; t)ωl1,k1
ωl2,k2
−
π2
2
∑
l1 ,l2
∑
k1,k2
M
(2)l1 ,l2
2 (k1,k2; t)ωl1,k1
λl2 ,k2
]
. (3.20)
Then, transforming this expression in the exponent to a diagonal quadratic form over variables ωl ,k ,
similarly to W (a; t), after integrating with respect to the new variables ω̄l ,k , one obtains:
W G(a,λ; t) =
∫
dωexp
[
− iπ
∑
l ,k
〈 ˙̂al ,k〉
t
kinλl ,k −
1
2V 2
∑
q
∑
k
β−q(t)ν(k)
(
nq+kn−k −nq
)
−
π2
2
∑
l ,k
E−1
l (k; t)bl ,kbl ,−k −
1
2
∑
k
lnπdet Ẽ(k; t)+
∑
k
ln detW̃ (k; t)
]
, (3.21)
where
bl ,k =
∑
j
ωl j
[
ā j ,k +
iπ
2
∑
j ′
M
(2) j , j ′
2 (k; t)λ j ′,k
]
,
and ωl j ,M
(2) j , j ′
2 (k; t) and El (k; t) are not dependent on λl ,k . Here, the cumulants M
(2) j , j ′
2 (k; t) have the
following structure:
M
(2) j , j ′
2 (k; t) = 〈 ˙̂a j ,kâ j ′,−k〉
t
kin-sh−〈 ˙̂a j ,k〉
t
kin〈â j ′,−k〉
t
kin-sh. (3.22)
Now, we calculate the hydrodynamic velocities vl ,k(a; t) in a Gaussian approximation according to the
formula
vl ,k(a; t) =
∂
∂(−iπλl ,k)
lnW G(a,λ; t)
∣
∣
∣
λl ,k=0
= 〈 ˙̂a j ,k〉
t
kin−
1
2
∑
j , j ′
E−1
l (k; t)ω j lω j ′lM
(2) j ′,l
2 (k; t)āl ,k . (3.23)
Specifically, we consider the particular case when one can divide the longitudinal and transverse fluctu-
ations for collective variables. That is, we choose the direction of the wave vector k along the axis of Oz.
Thus, one obtains:
W G(a; t)=
∫
dωexp
[
iπ
∑
l ,k
ωl ,kāl ,k −
1
2V 2
∑
q
∑
k
β−q(t)ν(k)
(
nq+kn−k −nq
)
−
π2
2
3
∑
l1,l2=1
∑
k1,k2
M
∥,l1 ,l2
2 (k1,k2; t)ωl1,k1
ωl2,k2
−
π2
2
4
∑
l1,l2=1
∑
k1,k2
M
∥,⊥,l1 ,l2
2 (k1,k2; t)ωl1 ,k1
ωl2 ,k2
]
, (3.24)
43705-15
I.R. Yukhnovskii, P.A. Hlushak, M.V. Tokarchuk
whereM
∥,l1,l2
2 (k1,k2; t) are the matrix elements of the non-equilibrium correlation functions of longitu-
dinal fluctuations
M
∥
2(k1,k2; t) =
∣
∣
∣
∣
∣
∣
∣
〈n̂n̂〉c
kin-sh
〈n̂Ĵ∥〉c
kin-sh
〈n̂ε̂〉c
kin-sh
〈Ĵ∥n̂〉c
kin-sh
〈Ĵ∥Ĵ∥〉c
kin-sh
〈Ĵ∥ε̂〉c
kin-sh
〈ε̂n̂〉c
kin-sh
〈ε̂Ĵ∥〉c
kin-sh
〈ε̂ε̂〉c
kin-sh
∣
∣
∣
∣
∣
∣
∣
k1,k2
, (3.25)
M
⊥l1,l2
2 (k1,k2; t) are the matrix elements of the non-equilibrium correlation functions of transverse and
transverse-longitudinal fluctuations
M
∥,⊥
2 (k1,k2; t) =
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
0 〈n̂Ĵ⊥x 〉
c
kin-sh
〈n̂Ĵ⊥y 〉
c
kin-sh
0
〈Ĵ⊥x n̂〉c
kin-sh
〈Ĵ⊥x Ĵ⊥x 〉
c
kin-sh
〈Ĵ⊥x Ĵ⊥y 〉
c
kin-sh
〈Ĵ⊥x ε̂〉
c
kin-sh
〈Ĵ⊥y n̂〉c
kin-sh
〈Ĵ⊥y Ĵ⊥x 〉
c
kin-sh
〈Ĵ⊥y Ĵ⊥y 〉
c
kin-sh
〈Ĵ⊥y ε̂〉
c
kin-sh
0 〈ε̂Ĵ⊥x 〉
c
kin-sh
〈ε̂Ĵ⊥y 〉
c
kin-sh
0
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
k1,k2
. (3.26)
In this case, the hydrodynamic velocities in the Gaussian approximation are as follows:
v
∥G
nk
(a; t) = 〈 ˙̂nk〉
t
kin-sh+E−1
1 (k; t)
(
ω11n̄k +ω21J̄
∥
k
+ω31ε̄k
)
Ωn(k; t), (3.27)
v
∥G
Jk
(a; t) = 〈˙̂J
∥
k
〉t
kin-sh+E−1
2 (k; t)
(
ω12n̄k +ω22J̄
∥
k
+ω32ε̄k
)
ΩJ (k; t),
v
∥G
εk
(a; t) = 〈 ˙̂εk〉
t
kin-sh+E−1
3 (k; t)
(
ω13n̄k +ω23J̄
∥
k
+ω33ε̄k
)
Ωε(k; t),
where
Ωn (k; t) =ω11〈n̂k
˙̂n−k〉
t ,c
kin-sh
+ω21〈Ĵ
∥
k
˙̂n−k〉
t ,c
kin-sh
+ω31〈ε̂k
˙̂n−k〉
t ,c
kin-sh
, (3.28)
ΩJ (k; t) =ω12〈n̂k
˙̂J
∥
−k
〉
t ,c
kin-sh
+ω22〈Ĵ
∥
k
˙̂J
∥
−k
〉
t ,c
kin-sh
+ω32〈ε̂k
˙̂J
∥
−k
〉
t ,c
kin-sh
,
Ωε(k; t) =ω13〈n̂k
˙̂ε−k〉
t ,c
kin-sh
+ω23〈Ĵ
∥
k
˙̂ε−k〉
t ,c
kin-sh
+ω33〈ε̂k
˙̂ε−k〉
t ,c
kin-sh
,
and ωl j are the elements of matrix W̃ (k; t).
As one can see the hydrodynamic velocities (3.27) in the Gaussian approximation for W G(a,λ; t) are
linear functions of the collective variables nk , Jk and εk. It is remarkable that if the kinetic processes
are not taken into account, i.e., ̺kin-sh
rel
(xN ; t) = 1, then 〈. . .〉t
kin-sh
→〈. . .〉0 is an average over a microscopic
ensemble W (a); in this case, the expressions (3.27) for hydrodynamic velocities transform into the re-
sults of the previous work [48], in which the nonlinear hydrodynamic fluctuations in simple fluids were
investigated.
4. Conclusions
Using the method of Zubarev non-equilibrium statistical operator, we have obtained amodified chain
of BBGKY kinetic equations that take into account non-equilibrium hydrodynamic fluctuations for a sys-
tem of interacting particles. At the same time, the non-equilibrium distribution function that describes
the hydrodynamic fluctuations, satisfies a generalized Fokker-Planck equation. We divide the contribu-
tions from short-range and long-range interactions between particles, and describe the short-range inter-
actions (hard sphere model) in the coordinate space, while the long-range interactions are described in
the space of collective variables.
Moreover, the short-range component will be considered as a basis with distribution ̺kin-sh
rel
(xN ; t),
which corresponds to the BBGKY chain of equations for the model of hard spheres [40].
The used method of collective variables [35, 47, 49] has made it possible to calculate the structural
distribution function of hydrodynamic collective variables and their hydrodynamic velocities in approxi-
mations higher than the Gaussian one. In particular, the hydrodynamic velocities above the Gaussian ap-
proximation that follow from equation (3.19) and (3.27) will be proportional to āl ,k āl ′,k , and the transport
kernels in the Fokker-Planck equation will be of fourth-order correlation functions over variables âl ,k .
It is significant that the Fokker-Planck equation in a Gauss approximation for W̃ G(k; t), vG
l ,k
(a; t) leads to
43705-16
BBGKY chain of kinetic equations, non-equilibrium statistical operator method
transport equations for 〈âl ,k〉
t and the structure of these equations is the same as in molecular hydrody-
namics [50, 51], although the averaging is performed using ̺L(xN , a; t) = ̺
kin-hyd
rel
(xN ; t) f̂ (a)/W G(a; t).
The proposed approach makes it possible to go beyond the Gaussian approximation for W̃ (k; t),
vl ,k(a; t) and for transport kernels in the Fokker-Planck equation. As a result, we obtain a nonlinear
system of equations for the 〈âl ,k〉
t . It is remarkable that the kinetic equation (2.39) contains generalized
integrals of Fokker-Planck type with generalized coefficients of diffusion and friction in the phase space
(r,p, t), where the limit of change of |r| is restricted by value |k|−1
hydr
that corresponds to collective non-
linear hydrodynamic fluctuations. This means that in areas smaller than |k|−1
hydr
, the processes are de-
scribed by generalized coefficients of diffusion and friction, while in areas larger than |k|−1
hydr
they are de-
scribed by generalized coefficient of viscosity, thermal conductivity φ j j (k,q, a, a′; t , t ′),φεε(k,q, a, a′; t , t ′)
and by cross coefficients φ jε(k,q, a, a′; t , t ′), φε j (k,q, a, a′; t , t ′). The correlations between these areas of
transport are described by kernels φn j (x,q, a, a′; t , t ′), φnε(x,q, a, a′; t , t ′), φεn (k, x′, a, a′; t , t ′),
φ j n(k, x′, a, a′; t , t ′), which are present both in kinetic and Fokker-Planck equations, and describe cross-
correlation between kinetic and hydrodynamic processes.
References
1. Bogolubov N.N., In: Studies in Statistical Mechanics Vol. 1, de Boer J., Uhlenbeck G.E. (Eds.), North-Holland, Am-
sterdam, 1962, 1.
2. Born M., Green H.S., A General Kinetic Theory of Liquids, Cambridge University Press, Cambridge, 1949.
3. Kirkwood J.K., J. Chem. Phys., 1946, 14, 180; doi:10.1063/1.1724117.
4. Kirkwood J.K., J. Chem. Phys., 1947, 15, 72; doi:10.1063/1.1746292.
5. Yvon J., La Théorie des Fluids et L’équation D’etat: Actualités Scientificues et Industrielles, Hermann and Cie,
Paris, 1935.
6. Zubarev D.N., Dokl. Akad. Nauk S.S.S.R., 1961, 140, 92 (in Russian).
7. Zubarev D.N., Dokl. Akad. Nauk S.S.S.R., 1965, 164, 537 (in Russian).
8. Zubarev D.N., Theor. Math. Phys., 1970, 3, 505; doi:10.1007/BF01046515.
9. Zwanzig R., J. Chem. Phys., 1960, 33, 1338; doi:10.1063/1.1731409.
10. Zwanzig R., Phys. Rev., 1961, 124, 983; doi:10.1103/PhysRev.124.983.
11. Zwanzig R., Physica, 1964, 30, 1109; doi:10.1016/0031-8914(64)90102-8.
12. Robertson B., Phys. Rev., 1967, 144, 151; doi:10.1103/PhysRev.144.151.
13. Robertson B., Phys. Rev., 1967, 160, 175; doi:10.1103/PhysRev.160.175.
14. Kawasaki K., Gunton J.D., Phys. Rev. A, 1973, 8, 2048; doi:10.1103/PhysRevA.8.2048.
15. Peletminskii S.V., Yatsenko A.A., Zh. Eksp. Teor. Fiz., 1967, 53, 1327 (in Russian) [Sov. Phys. JETP, 1968, 26, 773].
16. Zubarev D.N., Kalashnikov V.P., Theor. Math. Phys., 1971, 3, 395; doi:10.1007/BF01031594.
17. Zubarev D.N., Nonequilibrium Statistical Thermodynamics, Plenum Press, New York, 1974.
18. Akhiezer A.I., Peletminsky S.V., Methods in Statistical Physics, Springer-Verlag, Berlin, 1979.
19. Zubarev D.N., Morozov V.G., Rëpke G., Statistical Mechanics of Nonequilibrium Processes Vol. 1, Akademie,
Berlin, 1996.
20. Zubarev D.N., Morozov V.G., Rëpke G., Statistical Mechanics of Nonequilibrium Processes Vol. 2, Akademie,
Berlin, 1996.
21. Lyapilin I.I., Kalashnikov V.P., Nonequilibrium Statistical Operator and its Application to the Kinetics of Para-
magnetic Phenomena in Conducting Crystals, Ural Division of the Russian Academy of Sciences, Ekaterinburg,
2008 (in Russian).
22. Kostrobij P.P., Tokarchuk M.V., Markovych B.M., Ignatyuk V.V., Hnativ B.V., Reaction-Diffusion Processes in Sys-
tems “Metal–Gas”, Lviv Polytechnic National University, Lviv, 2009 (in Ukrainian).
23. Khamzin A.A., Nigmatullin R.R., Nonequilibrium Statistical Operator Method and its Application to the Kinetics
of Ising’s Magnets, Kazan State University, Kazan, 2011 (in Russian).
24. Zubarev D.N., Itogi Nauki Tekh. Ser. Sovrem. Probl. Mat., 1980, 15, 131 (in Russian) [J. Sov. Math., 1981, 16, 1509].
25. Zubarev D.N., Tserkovnikov Yu.A., Proc. Steklov Inst. Math., 1988, 175, 139.
26. Bogolyubov N.N. (Jr.), Shumovskii A.S., Yukalov V.I., Theor. Math. Phys., 1984, 60, 921; doi:10.1007/BF01017895.
27. Shumovsky A.S., Yukalov V.I., Sov. J. Part. Nucl., 1985, 16, 1274 (in Russian).
28. Yukalov V.I., Phys. Rep., 1991, 208, 395; doi:10.1016/0370-1573(91)90074-V.
29. Fischer E.W., Physica A, 1993, 202, 183; doi:10.1016/0378-4371(93)90416-2.
30. Olemskoi A.I., Koplyk I.V., Usp. Fiz. Nauk, 1995, 165, 1005 (in Russian); doi:10.3367/UFNr.0165.199510a.1105.
43705-17
http://dx.doi.org/10.1063/1.1724117
http://dx.doi.org/10.1063/1.1746292
http://dx.doi.org/10.1007/BF01046515
http://dx.doi.org/10.1063/1.1731409
http://dx.doi.org/10.1103/PhysRev.124.983
http://dx.doi.org/10.1016/0031-8914(64)90102-8
http://dx.doi.org/10.1103/PhysRev.144.151
http://dx.doi.org/10.1103/PhysRev.160.175
http://dx.doi.org/10.1103/PhysRevA.8.2048
http://dx.doi.org/10.1007/BF01031594
http://dx.doi.org/10.1007/BF01017895
http://dx.doi.org/10.1016/0370-1573(91)90074-V
http://dx.doi.org/10.1016/0378-4371(93)90416-2
http://dx.doi.org/10.3367/UFNr.0165.199510a.1105
I.R. Yukhnovskii, P.A. Hlushak, M.V. Tokarchuk
31. Olemskoi A.I., Theory of Structure Transformations in Non-Equilibrium Condensed Matter, Horizons in World
Physics Series Vol. 231, NOVA Science Publishers, New York, 1999.
32. Bakai A.S., Fischer E.W., J. Chem. Phys., 2004, 120, 5235; doi:10.1063/1.1648300.
33. Onuki A.I., Phase Transition Dynamics, Cambridge University Press, Cambridge, 2004.
34. Das S., Statistical Physics of Liquids at Freezing and Beyond, Cambridge University Press, Cambridge, 2011.
35. Hlushak P.A., Tokarchuk M.V., Physica A, 2016, 443, 231; doi:10.1016/j.physa.2015.09.059.
36. Klimontovich Yu.L., Theor. Math. Phys., 1998, 115, 707; doi:10.1007/BF02575494.
37. Zubarev D.N., Morozov V.G., Theor. Math. Phys., 1984, 60, 814; doi:10.1007/BF01018982.
38. Zubarev D.N., Morozov V.G., Omelyan I.P., Tokarchuk I.P., Theor. Math. Phys., 1991, 87, 412;
doi:10.1007/BF01016582.
39. Zubarev D.N., Morozov V.G., Omelyan I.P., Tokarchuk I.P., Theor. Math. Phys., 1993, 96, 997;
doi:10.1007/BF01019063.
40. Kobryn A.E., Omelyan I.P., Tokarchuk M.V., J. Stat. Phys., 1998, 92, 973; doi:10.1023/A:1023044610690.
41. Zubarev D.N., Morozov V.G., Proc. Steklov Inst. Math., 1992, 191, 155.
42. Tokarchuk M.V., Omelyan I.P., Kobryn A.E., Condens. Matter Phys., 1998, 1, No. 4(16), 687;
doi:10.5488/CMP.1.4.687.
43. Markiv B., Omelyan I., Tokarchuk M., J. Stat. Phys., 2014, 155, 843; doi:10.1007/s10955-014-0980-4.
44. Cohen E.G.D., Physica, 1962, 28, 1045; doi:10.1016/0031-8914(62)90009-5.
45. Zubarev D.N., Morozov D.N., Physica A, 1983, 120, 411; doi:10.1016/0378-4371(83)90062-6.
46. Kawasaki K., In: Phase Transition and Critical Phenomena Vol. 5A, Domb C., Green M.S. (Eds.), Academic, New
York, 1976, 165–411.
47. Zubarev D.N., Theor. Math. Phys., 1982, 53, 1004; doi:10.1007/BF01014797.
48. Idzyk I.M., Ighatyuk V.V., Tokarchuk M.V., Ukr. J. Phys., 1996, 41, No. 10, 1017 (in Ukrainian).
49. Yukhnovskii I.R., Holovko M.F., Statistical Theory of Classical Equilibrium Systems, Naukova Dumka, Kiev, 1980
(in Russian).
50. Mryglod I.M., Tokarchuk M.V., Voprosy Atomnoi Nauki i Tekhniki, 1992, 3, No. 24, 134.
51. Mryglod I.M., Omelyan I.P., Tokarchuk M.V., Mol. Phys., 1995, 84, 235; doi:10.1080/00268979500100181.
Ланцюжок кiнетичних рiвнянь ББГКI, метод нерiвноважного
статистичного оператора та метод колективних змiнних в
нерiвноважнiй статистичнiй теорiї рiдин
I.Р. Юхновський, П.А. Глушак, М.В. Токарчук
Iнститут фiзики конденсованих систем НАН України, вул. Свєнцiцького, 1, 79011 Львiв, Україна
Запропоновано ланцюжок кiнетичних рiвнянь для нерiвноважних одночастинкової, двочастинкової i s-
частинкової функцiй розподiлу частинок з урахуванням нелiнiйних гiдродинамiчних флуктуацiй. Викори-
стовується метод нерiвноважного статистичного оператора Зубарєва з проектуванням. Нелiнiйнi гiдроди-
намiчнi флуктуацiї описуються нерiвноважною функцiєю розподiлу колективних змiнних, що задоволь-
няє узагальнене рiвняння Фоккера-Планка. На основi методу колективних змiнних запропоновано спо-
сiб розрахунку нерiвноважної структурної функцiї розподiлу колективних змiнних та їх гiдродинамiчних
швидкостей (вище гаусового наближення), що мiстяться в узагальненому рiвняннi Фоккера-Планка для
нерiвноважної функцiї розподiлу колективних змiнних. При цьому роздiленi вклади вiд короткодiючих
i далекодiючих взаємодiй мiж частинками, що привело до того, що короткодiючi взаємодiї (наприклад,
модель твердих сфер) описуються в координатному просторi, а далекодiючi — у просторi колективних
змiнних. Короткодiюча складова розглядається як базисна, якiй вiдповiдає ланцюжок рiвнянь ББГКI для
моделi твердих сфер.
Ключовi слова: нелiнiйнi флуктуацiї, нерiвноважний статистичний оператор, функцiя розподiлу,
рiвняння Фоккера-Планка, проста рiдина
43705-18
http://dx.doi.org/10.1063/1.1648300
http://dx.doi.org/10.1016/j.physa.2015.09.059
http://dx.doi.org/10.1007/BF02575494
http://dx.doi.org/10.1007/BF01018982
http://dx.doi.org/10.1007/BF01016582
http://dx.doi.org/10.1007/BF01019063
http://dx.doi.org/10.1023/A:1023044610690
http://dx.doi.org/10.5488/CMP.1.4.687
http://dx.doi.org/10.1007/s10955-014-0980-4
http://dx.doi.org/10.1016/0031-8914(62)90009-5
http://dx.doi.org/10.1016/0378-4371(83)90062-6
http://dx.doi.org/10.1007/BF01014797
http://dx.doi.org/10.1080/00268979500100181
Introduction
Non-equilibrium distribution function and BBGKY chain of kinetic equations in the Zubarev non-equilibrium statistical operator method
Calculation of structure function W(a;t) and hydrodynamical velocities v(a;t) by the collective variable method
Conclusions
|