Miniversal deformations of chains of linear mappings

V.I. Arnold [Russian Math. Surveys, 26 (no. 2), 1971, pp. 29–43] gave a miniversal deformation of matrices of linear operators; that is, a simple canonical form, to which not only a given square matrix A, but also the family of all matrices close to A, can be reduced by similarity transformations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and Discrete Mathematics
Datum:2005
Hauptverfasser: Gaiduk, T.N., Sergeichuk, V.V., Zharko, N.A.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2005
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/156589
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Miniversal deformations of chains of linear mappings / T.N. Gaiduk, V.V. Sergeichuk, N.A. Zharko // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 1. — С. 47–61. — Бібліогр.: 10 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:V.I. Arnold [Russian Math. Surveys, 26 (no. 2), 1971, pp. 29–43] gave a miniversal deformation of matrices of linear operators; that is, a simple canonical form, to which not only a given square matrix A, but also the family of all matrices close to A, can be reduced by similarity transformations smoothly depending on the entries of matrices. We study miniversal deformations of quiver representations and obtain a miniversal deformation of matrices of chains of linear mappings V₁ V₂ · · · Vt , where all Vi are complex or real vector spaces and each line denotes −→ or ←−.
ISSN:1726-3255