Miniversal deformations of chains of linear mappings

V.I. Arnold [Russian Math. Surveys, 26 (no. 2), 1971, pp. 29–43] gave a miniversal deformation of matrices of linear operators; that is, a simple canonical form, to which not only a given square matrix A, but also the family of all matrices close to A, can be reduced by similarity transformations...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Algebra and Discrete Mathematics
Дата:2005
Автори: Gaiduk, T.N., Sergeichuk, V.V., Zharko, N.A.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2005
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/156589
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Miniversal deformations of chains of linear mappings / T.N. Gaiduk, V.V. Sergeichuk, N.A. Zharko // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 1. — С. 47–61. — Бібліогр.: 10 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-156589
record_format dspace
spelling Gaiduk, T.N.
Sergeichuk, V.V.
Zharko, N.A.
2019-06-18T17:30:09Z
2019-06-18T17:30:09Z
2005
Miniversal deformations of chains of linear mappings / T.N. Gaiduk, V.V. Sergeichuk, N.A. Zharko // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 1. — С. 47–61. — Бібліогр.: 10 назв. — англ.
1726-3255
2000 Mathematics Subject Classification: 15A21; 16G20.
https://nasplib.isofts.kiev.ua/handle/123456789/156589
V.I. Arnold [Russian Math. Surveys, 26 (no. 2), 1971, pp. 29–43] gave a miniversal deformation of matrices of linear operators; that is, a simple canonical form, to which not only a given square matrix A, but also the family of all matrices close to A, can be reduced by similarity transformations smoothly depending on the entries of matrices. We study miniversal deformations of quiver representations and obtain a miniversal deformation of matrices of chains of linear mappings V₁ V₂ · · · Vt , where all Vi are complex or real vector spaces and each line denotes −→ or ←−.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Miniversal deformations of chains of linear mappings
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Miniversal deformations of chains of linear mappings
spellingShingle Miniversal deformations of chains of linear mappings
Gaiduk, T.N.
Sergeichuk, V.V.
Zharko, N.A.
title_short Miniversal deformations of chains of linear mappings
title_full Miniversal deformations of chains of linear mappings
title_fullStr Miniversal deformations of chains of linear mappings
title_full_unstemmed Miniversal deformations of chains of linear mappings
title_sort miniversal deformations of chains of linear mappings
author Gaiduk, T.N.
Sergeichuk, V.V.
Zharko, N.A.
author_facet Gaiduk, T.N.
Sergeichuk, V.V.
Zharko, N.A.
publishDate 2005
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description V.I. Arnold [Russian Math. Surveys, 26 (no. 2), 1971, pp. 29–43] gave a miniversal deformation of matrices of linear operators; that is, a simple canonical form, to which not only a given square matrix A, but also the family of all matrices close to A, can be reduced by similarity transformations smoothly depending on the entries of matrices. We study miniversal deformations of quiver representations and obtain a miniversal deformation of matrices of chains of linear mappings V₁ V₂ · · · Vt , where all Vi are complex or real vector spaces and each line denotes −→ or ←−.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/156589
fulltext
citation_txt Miniversal deformations of chains of linear mappings / T.N. Gaiduk, V.V. Sergeichuk, N.A. Zharko // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 1. — С. 47–61. — Бібліогр.: 10 назв. — англ.
work_keys_str_mv AT gaiduktn miniversaldeformationsofchainsoflinearmappings
AT sergeichukvv miniversaldeformationsofchainsoflinearmappings
AT zharkona miniversaldeformationsofchainsoflinearmappings
first_indexed 2025-11-24T09:19:12Z
last_indexed 2025-11-24T09:19:12Z
_version_ 1850844534130343936