Miniversal deformations of chains of linear mappings
V.I. Arnold [Russian Math. Surveys, 26 (no. 2), 1971, pp. 29–43] gave a miniversal deformation of matrices of linear operators; that is, a simple canonical form, to which not only a given square matrix A, but also the family of all matrices close to A, can be reduced by similarity transformations...
Збережено в:
| Опубліковано в: : | Algebra and Discrete Mathematics |
|---|---|
| Дата: | 2005 |
| Автори: | , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2005
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/156589 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Miniversal deformations of chains of linear mappings / T.N. Gaiduk, V.V. Sergeichuk, N.A. Zharko // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 1. — С. 47–61. — Бібліогр.: 10 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-156589 |
|---|---|
| record_format |
dspace |
| spelling |
Gaiduk, T.N. Sergeichuk, V.V. Zharko, N.A. 2019-06-18T17:30:09Z 2019-06-18T17:30:09Z 2005 Miniversal deformations of chains of linear mappings / T.N. Gaiduk, V.V. Sergeichuk, N.A. Zharko // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 1. — С. 47–61. — Бібліогр.: 10 назв. — англ. 1726-3255 2000 Mathematics Subject Classification: 15A21; 16G20. https://nasplib.isofts.kiev.ua/handle/123456789/156589 V.I. Arnold [Russian Math. Surveys, 26 (no. 2), 1971, pp. 29–43] gave a miniversal deformation of matrices of linear operators; that is, a simple canonical form, to which not only a given square matrix A, but also the family of all matrices close to A, can be reduced by similarity transformations smoothly depending on the entries of matrices. We study miniversal deformations of quiver representations and obtain a miniversal deformation of matrices of chains of linear mappings V₁ V₂ · · · Vt , where all Vi are complex or real vector spaces and each line denotes −→ or ←−. en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics Miniversal deformations of chains of linear mappings Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Miniversal deformations of chains of linear mappings |
| spellingShingle |
Miniversal deformations of chains of linear mappings Gaiduk, T.N. Sergeichuk, V.V. Zharko, N.A. |
| title_short |
Miniversal deformations of chains of linear mappings |
| title_full |
Miniversal deformations of chains of linear mappings |
| title_fullStr |
Miniversal deformations of chains of linear mappings |
| title_full_unstemmed |
Miniversal deformations of chains of linear mappings |
| title_sort |
miniversal deformations of chains of linear mappings |
| author |
Gaiduk, T.N. Sergeichuk, V.V. Zharko, N.A. |
| author_facet |
Gaiduk, T.N. Sergeichuk, V.V. Zharko, N.A. |
| publishDate |
2005 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
V.I. Arnold [Russian Math. Surveys, 26 (no. 2),
1971, pp. 29–43] gave a miniversal deformation of matrices of linear operators; that is, a simple canonical form, to which not only a
given square matrix A, but also the family of all matrices close to
A, can be reduced by similarity transformations smoothly depending on the entries of matrices. We study miniversal deformations
of quiver representations and obtain a miniversal deformation of
matrices of chains of linear mappings
V₁ V₂ · · · Vt ,
where all Vi are complex or real vector spaces and each line denotes
−→ or ←−.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/156589 |
| fulltext |
|
| citation_txt |
Miniversal deformations of chains of linear mappings / T.N. Gaiduk, V.V. Sergeichuk, N.A. Zharko // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 1. — С. 47–61. — Бібліогр.: 10 назв. — англ. |
| work_keys_str_mv |
AT gaiduktn miniversaldeformationsofchainsoflinearmappings AT sergeichukvv miniversaldeformationsofchainsoflinearmappings AT zharkona miniversaldeformationsofchainsoflinearmappings |
| first_indexed |
2025-11-24T09:19:12Z |
| last_indexed |
2025-11-24T09:19:12Z |
| _version_ |
1850844534130343936 |