Clones of full terms

In this paper the well-known connection between hyperidentities of an algebra and identities satisfied by the clone of this algebra is studied in a restricted setting, that of n-ary full hyperidentities and identities of the n-ary clone of term operations which are induced by full terms. We prov...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Algebra and Discrete Mathematics
Дата:2004
Автори: Denecke, K., Jampachon, P.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2004
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/156591
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Clones of full terms / K. Denecke, P. Jampachon // Algebra and Discrete Mathematics. — 2004. — Vol. 3, № 4. — С. 1–11. — Бібліогр.: 3 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-156591
record_format dspace
spelling Denecke, K.
Jampachon, P.
2019-06-18T17:30:53Z
2019-06-18T17:30:53Z
2004
Clones of full terms / K. Denecke, P. Jampachon // Algebra and Discrete Mathematics. — 2004. — Vol. 3, № 4. — С. 1–11. — Бібліогр.: 3 назв. — англ.
1726-3255
2000 Mathematics Subject Classification: 08A40, 08A60, 08A02, 20M35.
https://nasplib.isofts.kiev.ua/handle/123456789/156591
In this paper the well-known connection between hyperidentities of an algebra and identities satisfied by the clone of this algebra is studied in a restricted setting, that of n-ary full hyperidentities and identities of the n-ary clone of term operations which are induced by full terms. We prove that the n-ary full terms form an algebraic structure which is called a Menger algebra of rank n. For a variety V , the set IdF n V of all its identities built up by full n-ary terms forms a congruence relation on that Menger algebra. If IdF n V is closed under all full hypersubstitutions, then the variety V is called n−F−solid. We will give a characterization of such varieties and apply the results to 2 − F−solid varieties of commutative groupoids.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Clones of full terms
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Clones of full terms
spellingShingle Clones of full terms
Denecke, K.
Jampachon, P.
title_short Clones of full terms
title_full Clones of full terms
title_fullStr Clones of full terms
title_full_unstemmed Clones of full terms
title_sort clones of full terms
author Denecke, K.
Jampachon, P.
author_facet Denecke, K.
Jampachon, P.
publishDate 2004
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description In this paper the well-known connection between hyperidentities of an algebra and identities satisfied by the clone of this algebra is studied in a restricted setting, that of n-ary full hyperidentities and identities of the n-ary clone of term operations which are induced by full terms. We prove that the n-ary full terms form an algebraic structure which is called a Menger algebra of rank n. For a variety V , the set IdF n V of all its identities built up by full n-ary terms forms a congruence relation on that Menger algebra. If IdF n V is closed under all full hypersubstitutions, then the variety V is called n−F−solid. We will give a characterization of such varieties and apply the results to 2 − F−solid varieties of commutative groupoids.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/156591
citation_txt Clones of full terms / K. Denecke, P. Jampachon // Algebra and Discrete Mathematics. — 2004. — Vol. 3, № 4. — С. 1–11. — Бібліогр.: 3 назв. — англ.
work_keys_str_mv AT deneckek clonesoffullterms
AT jampachonp clonesoffullterms
first_indexed 2025-12-07T13:37:52Z
last_indexed 2025-12-07T13:37:52Z
_version_ 1850856883361939456