A decomposition theorem for semiprime rings

A ring A is called an F DI-ring if there exists a decomposition of the identity of A in a sum of finite number of pairwise orthogonal primitive idempotents. We call a primitive idempotent e artinian if the ring eAe is Artinian. We prove that every semiprime F DI-ring is a direct product of a semi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and Discrete Mathematics
Datum:2005
1. Verfasser: Khibina, M.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2005
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/156595
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:A decomposition theorem for semiprime rings / M. Khibina // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 1. — С. 62–68. — Бібліогр.: 4 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-156595
record_format dspace
spelling Khibina, M.
2019-06-18T17:33:21Z
2019-06-18T17:33:21Z
2005
A decomposition theorem for semiprime rings / M. Khibina // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 1. — С. 62–68. — Бібліогр.: 4 назв. — англ.
1726-3255
2000 Mathematics Subject Classification: 16P40, 16G10.
https://nasplib.isofts.kiev.ua/handle/123456789/156595
A ring A is called an F DI-ring if there exists a decomposition of the identity of A in a sum of finite number of pairwise orthogonal primitive idempotents. We call a primitive idempotent e artinian if the ring eAe is Artinian. We prove that every semiprime F DI-ring is a direct product of a semisimple Artinian ring and a semiprime F DI-ring whose identity decomposition doesn’t contain artinian idempotents.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
A decomposition theorem for semiprime rings
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title A decomposition theorem for semiprime rings
spellingShingle A decomposition theorem for semiprime rings
Khibina, M.
title_short A decomposition theorem for semiprime rings
title_full A decomposition theorem for semiprime rings
title_fullStr A decomposition theorem for semiprime rings
title_full_unstemmed A decomposition theorem for semiprime rings
title_sort decomposition theorem for semiprime rings
author Khibina, M.
author_facet Khibina, M.
publishDate 2005
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description A ring A is called an F DI-ring if there exists a decomposition of the identity of A in a sum of finite number of pairwise orthogonal primitive idempotents. We call a primitive idempotent e artinian if the ring eAe is Artinian. We prove that every semiprime F DI-ring is a direct product of a semisimple Artinian ring and a semiprime F DI-ring whose identity decomposition doesn’t contain artinian idempotents.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/156595
citation_txt A decomposition theorem for semiprime rings / M. Khibina // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 1. — С. 62–68. — Бібліогр.: 4 назв. — англ.
work_keys_str_mv AT khibinam adecompositiontheoremforsemiprimerings
AT khibinam decompositiontheoremforsemiprimerings
first_indexed 2025-12-07T20:57:24Z
last_indexed 2025-12-07T20:57:24Z
_version_ 1850884535921672192