A decomposition theorem for semiprime rings
A ring A is called an F DI-ring if there exists a decomposition of the identity of A in a sum of finite number of pairwise orthogonal primitive idempotents. We call a primitive idempotent e artinian if the ring eAe is Artinian. We prove that every semiprime F DI-ring is a direct product of a semi...
Gespeichert in:
| Veröffentlicht in: | Algebra and Discrete Mathematics |
|---|---|
| Datum: | 2005 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2005
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/156595 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | A decomposition theorem for semiprime rings / M. Khibina // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 1. — С. 62–68. — Бібліогр.: 4 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-156595 |
|---|---|
| record_format |
dspace |
| spelling |
Khibina, M. 2019-06-18T17:33:21Z 2019-06-18T17:33:21Z 2005 A decomposition theorem for semiprime rings / M. Khibina // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 1. — С. 62–68. — Бібліогр.: 4 назв. — англ. 1726-3255 2000 Mathematics Subject Classification: 16P40, 16G10. https://nasplib.isofts.kiev.ua/handle/123456789/156595 A ring A is called an F DI-ring if there exists a decomposition of the identity of A in a sum of finite number of pairwise orthogonal primitive idempotents. We call a primitive idempotent e artinian if the ring eAe is Artinian. We prove that every semiprime F DI-ring is a direct product of a semisimple Artinian ring and a semiprime F DI-ring whose identity decomposition doesn’t contain artinian idempotents. en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics A decomposition theorem for semiprime rings Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
A decomposition theorem for semiprime rings |
| spellingShingle |
A decomposition theorem for semiprime rings Khibina, M. |
| title_short |
A decomposition theorem for semiprime rings |
| title_full |
A decomposition theorem for semiprime rings |
| title_fullStr |
A decomposition theorem for semiprime rings |
| title_full_unstemmed |
A decomposition theorem for semiprime rings |
| title_sort |
decomposition theorem for semiprime rings |
| author |
Khibina, M. |
| author_facet |
Khibina, M. |
| publishDate |
2005 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
A ring A is called an F DI-ring if there exists
a decomposition of the identity of A in a sum of finite number
of pairwise orthogonal primitive idempotents. We call a primitive idempotent e artinian if the ring eAe is Artinian. We prove
that every semiprime F DI-ring is a direct product of a semisimple
Artinian ring and a semiprime F DI-ring whose identity decomposition doesn’t contain artinian idempotents.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/156595 |
| citation_txt |
A decomposition theorem for semiprime rings / M. Khibina // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 1. — С. 62–68. — Бібліогр.: 4 назв. — англ. |
| work_keys_str_mv |
AT khibinam adecompositiontheoremforsemiprimerings AT khibinam decompositiontheoremforsemiprimerings |
| first_indexed |
2025-12-07T20:57:24Z |
| last_indexed |
2025-12-07T20:57:24Z |
| _version_ |
1850884535921672192 |