Correct classes of modules
For a ring R, call a class C of R-modules (pure-) mono-correct if for any M, N ∈ C the existence of (pure) monomorphisms M → N and N → M implies M ≃ N. Extending results and ideas of Rososhek from rings to modules, it is shown that, for an R-module M, the class σ[M] of all M-subgenerated modules...
Saved in:
| Published in: | Algebra and Discrete Mathematics |
|---|---|
| Date: | 2004 |
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Інститут прикладної математики і механіки НАН України
2004
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/156603 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Correct classes of modules / R. Wisbauer // Algebra and Discrete Mathematics. — 2004. — Vol. 3, № 4. — С. 106–118. — Бібліогр.: 18 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-156603 |
|---|---|
| record_format |
dspace |
| spelling |
Wisbauer, R. 2019-06-18T17:44:23Z 2019-06-18T17:44:23Z 2004 Correct classes of modules / R. Wisbauer // Algebra and Discrete Mathematics. — 2004. — Vol. 3, № 4. — С. 106–118. — Бібліогр.: 18 назв. — англ. 1726-3255 2000 Mathematics Subject Classification: 16D70, 16P40, 16D60. https://nasplib.isofts.kiev.ua/handle/123456789/156603 For a ring R, call a class C of R-modules (pure-) mono-correct if for any M, N ∈ C the existence of (pure) monomorphisms M → N and N → M implies M ≃ N. Extending results and ideas of Rososhek from rings to modules, it is shown that, for an R-module M, the class σ[M] of all M-subgenerated modules is mono-correct if and only if M is semisimple, and the class of all weakly M-injective modules is mono-correct if and only if M is locally noetherian. Applying this to the functor ring of R-Mod provides a new proof that R is left pure semisimple if and only if R-Mod is pure-mono-correct. Furthermore, the class of pure-injective Rmodules is always pure-mono-correct, and it is mono-correct if and only if R is von Neumann regular. The dual notion epi-correctness is also considered and it is shown that a ring R is left perfect if and only if the class of all flat R-modules is epi-correct. At the end some open problems are stated. en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics Correct classes of modules Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Correct classes of modules |
| spellingShingle |
Correct classes of modules Wisbauer, R. |
| title_short |
Correct classes of modules |
| title_full |
Correct classes of modules |
| title_fullStr |
Correct classes of modules |
| title_full_unstemmed |
Correct classes of modules |
| title_sort |
correct classes of modules |
| author |
Wisbauer, R. |
| author_facet |
Wisbauer, R. |
| publishDate |
2004 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
For a ring R, call a class C of R-modules (pure-)
mono-correct if for any M, N ∈ C the existence of (pure) monomorphisms M → N and N → M implies M ≃ N. Extending results
and ideas of Rososhek from rings to modules, it is shown that, for
an R-module M, the class σ[M] of all M-subgenerated modules
is mono-correct if and only if M is semisimple, and the class of
all weakly M-injective modules is mono-correct if and only if M is
locally noetherian. Applying this to the functor ring of R-Mod provides a new proof that R is left pure semisimple if and only if R-Mod
is pure-mono-correct. Furthermore, the class of pure-injective Rmodules is always pure-mono-correct, and it is mono-correct if and
only if R is von Neumann regular. The dual notion epi-correctness
is also considered and it is shown that a ring R is left perfect if
and only if the class of all flat R-modules is epi-correct. At the end
some open problems are stated.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/156603 |
| citation_txt |
Correct classes of modules / R. Wisbauer // Algebra and Discrete Mathematics. — 2004. — Vol. 3, № 4. — С. 106–118. — Бібліогр.: 18 назв. — англ. |
| work_keys_str_mv |
AT wisbauerr correctclassesofmodules |
| first_indexed |
2025-12-07T15:48:21Z |
| last_indexed |
2025-12-07T15:48:21Z |
| _version_ |
1850865092017520640 |