Gorenstein matrices
Let A = (aij ) be an integral matrix. We say that A is (0, 1, 2)-matrix if aij ∈ {0, 1, 2}. There exists the Gorenstein (0, 1, 2)-matrix for any permutation σ on the set {1, . . . , n} without fixed elements. For every positive integer n there exists the Gorenstein cyclic (0, 1, 2)-matrix An such...
Saved in:
| Published in: | Algebra and Discrete Mathematics |
|---|---|
| Date: | 2005 |
| Main Authors: | , , , |
| Format: | Article |
| Language: | English |
| Published: |
Інститут прикладної математики і механіки НАН України
2005
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/156609 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Gorenstein matrices / M.A. Dokuchaev, V.V. Kirichenko, A.V. Zelensky, V.N. Zhuravlev // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 1. — С. 8–29. — Бібліогр.: 24 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | Let A = (aij ) be an integral matrix. We say that
A is (0, 1, 2)-matrix if aij ∈ {0, 1, 2}. There exists the Gorenstein
(0, 1, 2)-matrix for any permutation σ on the set {1, . . . , n} without fixed elements. For every positive integer n there exists the
Gorenstein cyclic (0, 1, 2)-matrix An such that inx An = 2.
If a Latin square Ln with a first row and first column (0, 1, . . .
n − 1) is an exponent matrix, then n = 2m and Ln is the Cayley
table of a direct product of m copies of the cyclic group of order 2.
Conversely, the Cayley table Em of the elementary abelian group
Gm = (2)×. . .×(2) of order 2
m is a Latin square and a Gorenstein
symmetric matrix with first row (0, 1, . . . , 2
m − 1) and
σ(Em) =
1 2 3 . . . 2
m − 1 2m
2
m 2
m − 1 2m − 2 . . . 2 1 .
|
|---|---|
| ISSN: | 1726-3255 |