On strongly graded Gorestein orders

Let G be a finite group and let Λ = ⊕g∈GΛg be a strongly G-graded R-algebra, where R is a commutative ring with unity. We prove that if R is a Dedekind domain with quotient field K, Λ is an R-order in a separable K-algebra such that the algebra Λ1 is a Gorenstein R-order, then Λ is also a Gorens...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Algebra and Discrete Mathematics
Дата:2005
Автори: Theohari-Apostolidi, Th., Vavatsoulas, H.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2005
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/156618
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On strongly graded Gorestein orders / Th. Theohari-Apostolidi, H. Vavatsoulas // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 2. — С. 80–89. — Бібліогр.: 11 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-156618
record_format dspace
spelling Theohari-Apostolidi, Th.
Vavatsoulas, H.
2019-06-18T17:55:03Z
2019-06-18T17:55:03Z
2005
On strongly graded Gorestein orders / Th. Theohari-Apostolidi, H. Vavatsoulas // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 2. — С. 80–89. — Бібліогр.: 11 назв. — англ.
1726-3255
2000 Mathematics Subject Classification: 16H05, 16G30, 16S35, 16G10, 16W50.
https://nasplib.isofts.kiev.ua/handle/123456789/156618
Let G be a finite group and let Λ = ⊕g∈GΛg be a strongly G-graded R-algebra, where R is a commutative ring with unity. We prove that if R is a Dedekind domain with quotient field K, Λ is an R-order in a separable K-algebra such that the algebra Λ1 is a Gorenstein R-order, then Λ is also a Gorenstein R-order. Moreover, we prove that the induction functor ind : ModΛH → ModΛ defined in Section 3, for a subgroup H of G, commutes with the standard duality functor.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
On strongly graded Gorestein orders
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On strongly graded Gorestein orders
spellingShingle On strongly graded Gorestein orders
Theohari-Apostolidi, Th.
Vavatsoulas, H.
title_short On strongly graded Gorestein orders
title_full On strongly graded Gorestein orders
title_fullStr On strongly graded Gorestein orders
title_full_unstemmed On strongly graded Gorestein orders
title_sort on strongly graded gorestein orders
author Theohari-Apostolidi, Th.
Vavatsoulas, H.
author_facet Theohari-Apostolidi, Th.
Vavatsoulas, H.
publishDate 2005
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description Let G be a finite group and let Λ = ⊕g∈GΛg be a strongly G-graded R-algebra, where R is a commutative ring with unity. We prove that if R is a Dedekind domain with quotient field K, Λ is an R-order in a separable K-algebra such that the algebra Λ1 is a Gorenstein R-order, then Λ is also a Gorenstein R-order. Moreover, we prove that the induction functor ind : ModΛH → ModΛ defined in Section 3, for a subgroup H of G, commutes with the standard duality functor.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/156618
citation_txt On strongly graded Gorestein orders / Th. Theohari-Apostolidi, H. Vavatsoulas // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 2. — С. 80–89. — Бібліогр.: 11 назв. — англ.
work_keys_str_mv AT theohariapostolidith onstronglygradedgoresteinorders
AT vavatsoulash onstronglygradedgoresteinorders
first_indexed 2025-12-07T18:45:21Z
last_indexed 2025-12-07T18:45:21Z
_version_ 1850876228124278784