On strongly graded Gorestein orders
Let G be a finite group and let Λ = ⊕g∈GΛg be a strongly G-graded R-algebra, where R is a commutative ring with unity. We prove that if R is a Dedekind domain with quotient field K, Λ is an R-order in a separable K-algebra such that the algebra Λ1 is a Gorenstein R-order, then Λ is also a Gorens...
Збережено в:
| Опубліковано в: : | Algebra and Discrete Mathematics |
|---|---|
| Дата: | 2005 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2005
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/156618 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | On strongly graded Gorestein orders / Th. Theohari-Apostolidi, H. Vavatsoulas // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 2. — С. 80–89. — Бібліогр.: 11 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-156618 |
|---|---|
| record_format |
dspace |
| spelling |
Theohari-Apostolidi, Th. Vavatsoulas, H. 2019-06-18T17:55:03Z 2019-06-18T17:55:03Z 2005 On strongly graded Gorestein orders / Th. Theohari-Apostolidi, H. Vavatsoulas // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 2. — С. 80–89. — Бібліогр.: 11 назв. — англ. 1726-3255 2000 Mathematics Subject Classification: 16H05, 16G30, 16S35, 16G10, 16W50. https://nasplib.isofts.kiev.ua/handle/123456789/156618 Let G be a finite group and let Λ = ⊕g∈GΛg be a strongly G-graded R-algebra, where R is a commutative ring with unity. We prove that if R is a Dedekind domain with quotient field K, Λ is an R-order in a separable K-algebra such that the algebra Λ1 is a Gorenstein R-order, then Λ is also a Gorenstein R-order. Moreover, we prove that the induction functor ind : ModΛH → ModΛ defined in Section 3, for a subgroup H of G, commutes with the standard duality functor. en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics On strongly graded Gorestein orders Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
On strongly graded Gorestein orders |
| spellingShingle |
On strongly graded Gorestein orders Theohari-Apostolidi, Th. Vavatsoulas, H. |
| title_short |
On strongly graded Gorestein orders |
| title_full |
On strongly graded Gorestein orders |
| title_fullStr |
On strongly graded Gorestein orders |
| title_full_unstemmed |
On strongly graded Gorestein orders |
| title_sort |
on strongly graded gorestein orders |
| author |
Theohari-Apostolidi, Th. Vavatsoulas, H. |
| author_facet |
Theohari-Apostolidi, Th. Vavatsoulas, H. |
| publishDate |
2005 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
Let G be a finite group and let Λ = ⊕g∈GΛg be a
strongly G-graded R-algebra, where R is a commutative ring with
unity. We prove that if R is a Dedekind domain with quotient field
K, Λ is an R-order in a separable K-algebra such that the algebra
Λ1 is a Gorenstein R-order, then Λ is also a Gorenstein R-order.
Moreover, we prove that the induction functor ind : ModΛH →
ModΛ defined in Section 3, for a subgroup H of G, commutes with
the standard duality functor.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/156618 |
| citation_txt |
On strongly graded Gorestein orders / Th. Theohari-Apostolidi, H. Vavatsoulas // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 2. — С. 80–89. — Бібліогр.: 11 назв. — англ. |
| work_keys_str_mv |
AT theohariapostolidith onstronglygradedgoresteinorders AT vavatsoulash onstronglygradedgoresteinorders |
| first_indexed |
2025-12-07T18:45:21Z |
| last_indexed |
2025-12-07T18:45:21Z |
| _version_ |
1850876228124278784 |