Some properties of primitive matrices over Bezout B-domain
The properties of primitive matrices (matrices for which the greatest common divisor of the minors of maximal order is equal to 1) over Bezout B - domain, i.e. commutative domain finitely generated principal ideal in which for all a,b,c with (a,b,c) = 1,c 6= 0, there exists element r ∈ R, such t...
Saved in:
| Published in: | Algebra and Discrete Mathematics |
|---|---|
| Date: | 2005 |
| Main Author: | |
| Format: | Article |
| Language: | English |
| Published: |
Інститут прикладної математики і механіки НАН України
2005
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/156626 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Some properties of primitive matrices over Bezout B-domain / V.P. Shchedryk // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 2. — С. 46–57. — Бібліогр.: 14 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-156626 |
|---|---|
| record_format |
dspace |
| spelling |
Shchedryk, V.P. 2019-06-18T17:57:00Z 2019-06-18T17:57:00Z 2005 Some properties of primitive matrices over Bezout B-domain / V.P. Shchedryk // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 2. — С. 46–57. — Бібліогр.: 14 назв. — англ. 1726-3255 2000 Mathematics Subject Classification: 15A21. https://nasplib.isofts.kiev.ua/handle/123456789/156626 The properties of primitive matrices (matrices for which the greatest common divisor of the minors of maximal order is equal to 1) over Bezout B - domain, i.e. commutative domain finitely generated principal ideal in which for all a,b,c with (a,b,c) = 1,c 6= 0, there exists element r ∈ R, such that (a+rb,c) = 1 is investigated. The results obtained enable to describe invariants transforming matrices, i.e. matrices which reduce the given matrix to its canonical diagonal form. en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics Some properties of primitive matrices over Bezout B-domain Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Some properties of primitive matrices over Bezout B-domain |
| spellingShingle |
Some properties of primitive matrices over Bezout B-domain Shchedryk, V.P. |
| title_short |
Some properties of primitive matrices over Bezout B-domain |
| title_full |
Some properties of primitive matrices over Bezout B-domain |
| title_fullStr |
Some properties of primitive matrices over Bezout B-domain |
| title_full_unstemmed |
Some properties of primitive matrices over Bezout B-domain |
| title_sort |
some properties of primitive matrices over bezout b-domain |
| author |
Shchedryk, V.P. |
| author_facet |
Shchedryk, V.P. |
| publishDate |
2005 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
The properties of primitive matrices (matrices
for which the greatest common divisor of the minors of maximal
order is equal to 1) over Bezout B - domain, i.e. commutative
domain finitely generated principal ideal in which for all a,b,c with
(a,b,c) = 1,c 6= 0, there exists element r ∈ R, such that (a+rb,c) =
1 is investigated. The results obtained enable to describe invariants
transforming matrices, i.e. matrices which reduce the given matrix
to its canonical diagonal form.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/156626 |
| citation_txt |
Some properties of primitive matrices over Bezout B-domain / V.P. Shchedryk // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 2. — С. 46–57. — Бібліогр.: 14 назв. — англ. |
| work_keys_str_mv |
AT shchedrykvp somepropertiesofprimitivematricesoverbezoutbdomain |
| first_indexed |
2025-12-07T16:37:59Z |
| last_indexed |
2025-12-07T16:37:59Z |
| _version_ |
1850868215313334272 |