On the difference between the spectral radius and the maximum degree of graphs
Let G be a graph with the eigenvalues λ₁(G)≥⋯≥λn(G). The largest eigenvalue of G, λ₁(G), is called the spectral radius of G. Let β(G)=Δ(G)−λ₁(G), where Δ(G) is the maximum degree of vertices of G. It is known that if G is a connected graph, then β(G)≥0 and the equality holds if and only if G is regu...
Збережено в:
| Опубліковано в: : | Algebra and Discrete Mathematics |
|---|---|
| Дата: | 2017 |
| Автор: | |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2017
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/156636 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | On the difference between the spectral radius and the maximum degree of graphs / M.R. Oboudi // Algebra and Discrete Mathematics. — 2017. — Vol. 24, № 2. — С. 302-307. — Бібліогр.: 17 назв. — англ. |