Some remarks on Φ-sharp modules

The purpose of this paper is to introduce some new classes of modules which is closely related to the classes of sharp modules, pseudo-Dedekind modules and TV-modules. In this paper we introduce the concepts of Φ-sharp modules, Φ-pseudo-Dedekind modules and Φ-TV-modules. Let R be a commutative ring...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2017
Автори: Darani, A.Y., Rahmatinia, M.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2017
Назва видання:Algebra and Discrete Mathematics
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/156638
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Some remarks on Φ-sharp modules / A.Y. Darani, M. Rahmatinia // Algebra and Discrete Mathematics. — 2017. — Vol. 24, № 2. — С. 209-220. — Бібліогр.: 22 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-156638
record_format dspace
fulltext
spelling nasplib_isofts_kiev_ua-123456789-1566382025-02-09T12:28:51Z Some remarks on Φ-sharp modules Darani, A.Y. Rahmatinia, M. The purpose of this paper is to introduce some new classes of modules which is closely related to the classes of sharp modules, pseudo-Dedekind modules and TV-modules. In this paper we introduce the concepts of Φ-sharp modules, Φ-pseudo-Dedekind modules and Φ-TV-modules. Let R be a commutative ring with identity and set H={M∣M is an R-module and Nil(M) is a divided prime submodule of M}. For an R-module M∈H, set T=(R∖Z(M))∩(R∖Z(R)), T(M)=T−1(M) and P:=(Nil(M):RM). In this case the mapping Φ:T(M)⟶MP given by Φ(x/s)=x/s is an R-module homomorphism. The restriction of Φ to M is also an R-module homomorphism from M in to MP given by Φ(m/1)=m/1 for every m∈M. An R-module M∈H is called a Φ-sharp module if for every nonnil submodules N,L of M and every nonnil ideal I of R with N⊇IL, there exist a nonnil ideal I′⊇I of R and a submodule L′⊇L of M such that N=I′L′. We prove that Many of the properties and characterizations of sharp modules may be extended to Φ-sharp modules, but some can not. 2017 Article Some remarks on Φ-sharp modules / A.Y. Darani, M. Rahmatinia // Algebra and Discrete Mathematics. — 2017. — Vol. 24, № 2. — С. 209-220. — Бібліогр.: 22 назв. — англ. 1726-3255 2010 MSC:Primary 16N99, 16S99; Secondary 06C05, 16N20. https://nasplib.isofts.kiev.ua/handle/123456789/156638 en Algebra and Discrete Mathematics application/pdf Інститут прикладної математики і механіки НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The purpose of this paper is to introduce some new classes of modules which is closely related to the classes of sharp modules, pseudo-Dedekind modules and TV-modules. In this paper we introduce the concepts of Φ-sharp modules, Φ-pseudo-Dedekind modules and Φ-TV-modules. Let R be a commutative ring with identity and set H={M∣M is an R-module and Nil(M) is a divided prime submodule of M}. For an R-module M∈H, set T=(R∖Z(M))∩(R∖Z(R)), T(M)=T−1(M) and P:=(Nil(M):RM). In this case the mapping Φ:T(M)⟶MP given by Φ(x/s)=x/s is an R-module homomorphism. The restriction of Φ to M is also an R-module homomorphism from M in to MP given by Φ(m/1)=m/1 for every m∈M. An R-module M∈H is called a Φ-sharp module if for every nonnil submodules N,L of M and every nonnil ideal I of R with N⊇IL, there exist a nonnil ideal I′⊇I of R and a submodule L′⊇L of M such that N=I′L′. We prove that Many of the properties and characterizations of sharp modules may be extended to Φ-sharp modules, but some can not.
format Article
author Darani, A.Y.
Rahmatinia, M.
spellingShingle Darani, A.Y.
Rahmatinia, M.
Some remarks on Φ-sharp modules
Algebra and Discrete Mathematics
author_facet Darani, A.Y.
Rahmatinia, M.
author_sort Darani, A.Y.
title Some remarks on Φ-sharp modules
title_short Some remarks on Φ-sharp modules
title_full Some remarks on Φ-sharp modules
title_fullStr Some remarks on Φ-sharp modules
title_full_unstemmed Some remarks on Φ-sharp modules
title_sort some remarks on φ-sharp modules
publisher Інститут прикладної математики і механіки НАН України
publishDate 2017
url https://nasplib.isofts.kiev.ua/handle/123456789/156638
citation_txt Some remarks on Φ-sharp modules / A.Y. Darani, M. Rahmatinia // Algebra and Discrete Mathematics. — 2017. — Vol. 24, № 2. — С. 209-220. — Бібліогр.: 22 назв. — англ.
series Algebra and Discrete Mathematics
work_keys_str_mv AT daraniay someremarksonphsharpmodules
AT rahmatiniam someremarksonphsharpmodules
first_indexed 2025-11-25T23:55:28Z
last_indexed 2025-11-25T23:55:28Z
_version_ 1849808575778521088