Total global neighbourhood domination

A subset D of the vertex set of a connected graph G is called a total global neighbourhood dominating set (tgnd-set) of G if and only if D is a total dominating set of G as well as GN, where GN is the neighbourhood graph of G. The total global neighbourhood domination number (tgnd-number) is the min...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Algebra and Discrete Mathematics
Дата:2017
Автори: Siva Rama Raju, S.V., Nagaraja Rao, I.H.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2017
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/156643
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Total global neighbourhood domination / S.V. Siva Rama Raju, I.H. Nagaraja Rao // Algebra and Discrete Mathematics. — 2017. — Vol. 24, № 2. — С. 320-330. — Бібліогр.: 8 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-156643
record_format dspace
spelling Siva Rama Raju, S.V.
Nagaraja Rao, I.H.
2019-06-18T18:19:40Z
2019-06-18T18:19:40Z
2017
Total global neighbourhood domination / S.V. Siva Rama Raju, I.H. Nagaraja Rao // Algebra and Discrete Mathematics. — 2017. — Vol. 24, № 2. — С. 320-330. — Бібліогр.: 8 назв. — англ.
1726-3255
2010 MSC:05C69.
https://nasplib.isofts.kiev.ua/handle/123456789/156643
A subset D of the vertex set of a connected graph G is called a total global neighbourhood dominating set (tgnd-set) of G if and only if D is a total dominating set of G as well as GN, where GN is the neighbourhood graph of G. The total global neighbourhood domination number (tgnd-number) is the minimum cardinality of a total global neighbourhood dominating set of G and is denoted by γtgn(G). In this paper sharp bounds for γtgn are obtained. Exact values of this number for paths and cycles are presented as well. The characterization result for a subset of the vertex set of G to be a total global neighbourhood dominating set for G is given and also characterized the graphs of order n(≥3) having tgnd-numbers 2,n−1,n.
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Total global neighbourhood domination
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Total global neighbourhood domination
spellingShingle Total global neighbourhood domination
Siva Rama Raju, S.V.
Nagaraja Rao, I.H.
title_short Total global neighbourhood domination
title_full Total global neighbourhood domination
title_fullStr Total global neighbourhood domination
title_full_unstemmed Total global neighbourhood domination
title_sort total global neighbourhood domination
author Siva Rama Raju, S.V.
Nagaraja Rao, I.H.
author_facet Siva Rama Raju, S.V.
Nagaraja Rao, I.H.
publishDate 2017
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description A subset D of the vertex set of a connected graph G is called a total global neighbourhood dominating set (tgnd-set) of G if and only if D is a total dominating set of G as well as GN, where GN is the neighbourhood graph of G. The total global neighbourhood domination number (tgnd-number) is the minimum cardinality of a total global neighbourhood dominating set of G and is denoted by γtgn(G). In this paper sharp bounds for γtgn are obtained. Exact values of this number for paths and cycles are presented as well. The characterization result for a subset of the vertex set of G to be a total global neighbourhood dominating set for G is given and also characterized the graphs of order n(≥3) having tgnd-numbers 2,n−1,n.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/156643
citation_txt Total global neighbourhood domination / S.V. Siva Rama Raju, I.H. Nagaraja Rao // Algebra and Discrete Mathematics. — 2017. — Vol. 24, № 2. — С. 320-330. — Бібліогр.: 8 назв. — англ.
work_keys_str_mv AT sivaramarajusv totalglobalneighbourhooddomination
AT nagarajaraoih totalglobalneighbourhooddomination
first_indexed 2025-12-07T18:48:10Z
last_indexed 2025-12-07T18:48:10Z
_version_ 1850876405362982912