Current view of mesenchymal stem cells biology (brief review)

В настоящее время мезенхимальным стволовым клеткам (МСК) уделяется достаточно большое внимание, однако до сих пор не раскрытыми остаются некоторые аспекты их биологии. В обзоре представлены материалы современных исследований, посвященные проблемным вопросам биологии МСК. Кратко обсуждается возможнос...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2012
1. Verfasser: Maslova, O.O.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут молекулярної біології і генетики НАН України 2012
Schriftenreihe:Вiopolymers and Cell
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/156847
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Current view of mesenchymal stem cells biology (brief review) / O.O. Maslova // Вiopolymers and Cell. — 2012. — Т. 28, № 3. — С. 190–198. — Бібліогр.: 91 назв. — англ., рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-156847
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1568472025-02-23T18:06:05Z Current view of mesenchymal stem cells biology (brief review) Сучасні погляди на біологію мезенхімальних стовбурових клітин (короткий виклад) Современные взгляды на биологию мезенхимальных стволовых клеток (краткое изложение) Maslova, O.O. Reviews В настоящее время мезенхимальным стволовым клеткам (МСК) уделяется достаточно большое внимание, однако до сих пор не раскрытыми остаются некоторые аспекты их биологии. В обзоре представлены материалы современных исследований, посвященные проблемным вопросам биологии МСК. Кратко обсуждается возможность использования МСК в регенеративной медицине Ключевые слова: мезенхимальные стволовые клетки, регенеративная медицина, культивирование клеток. На сьогодні мезенхімальним стовбуровим клітинам (МСК) приділяють досить значну увагу, однак досі не розкритими залишаються деякі аспекти їхньої біології. В огляді представлено матеріали сучасних досліджень, присвячених проблемним питанням біології МСК. Коротко обговорюється можливість використання МСК у регенеративній медицині. Ключові слова: мезенхімальні стовбурові клітини, регенеративна медицина, культивування клітин. Although mesenchymal stem cells (MSC) are in a focus of attention, some aspects of their biology are still unclear. This paper is a review of current research on MSC biology. The use of MSC in regenerative medicine is also briefly discussed. Keywords: mesenchymal stem cells, regenerative medicine, cell cultivation. 2012 Article Current view of mesenchymal stem cells biology (brief review) / O.O. Maslova // Вiopolymers and Cell. — 2012. — Т. 28, № 3. — С. 190–198. — Бібліогр.: 91 назв. — англ., рос. 0233-7657 DOI: http://dx.doi.org/10.7124/bc.00004C https://nasplib.isofts.kiev.ua/handle/123456789/156847 576.57.085.23.615.012 en Вiopolymers and Cell application/pdf application/pdf Інститут молекулярної біології і генетики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Reviews
Reviews
spellingShingle Reviews
Reviews
Maslova, O.O.
Current view of mesenchymal stem cells biology (brief review)
Вiopolymers and Cell
description В настоящее время мезенхимальным стволовым клеткам (МСК) уделяется достаточно большое внимание, однако до сих пор не раскрытыми остаются некоторые аспекты их биологии. В обзоре представлены материалы современных исследований, посвященные проблемным вопросам биологии МСК. Кратко обсуждается возможность использования МСК в регенеративной медицине Ключевые слова: мезенхимальные стволовые клетки, регенеративная медицина, культивирование клеток.
format Article
author Maslova, O.O.
author_facet Maslova, O.O.
author_sort Maslova, O.O.
title Current view of mesenchymal stem cells biology (brief review)
title_short Current view of mesenchymal stem cells biology (brief review)
title_full Current view of mesenchymal stem cells biology (brief review)
title_fullStr Current view of mesenchymal stem cells biology (brief review)
title_full_unstemmed Current view of mesenchymal stem cells biology (brief review)
title_sort current view of mesenchymal stem cells biology (brief review)
publisher Інститут молекулярної біології і генетики НАН України
publishDate 2012
topic_facet Reviews
url https://nasplib.isofts.kiev.ua/handle/123456789/156847
citation_txt Current view of mesenchymal stem cells biology (brief review) / O.O. Maslova // Вiopolymers and Cell. — 2012. — Т. 28, № 3. — С. 190–198. — Бібліогр.: 91 назв. — англ., рос.
series Вiopolymers and Cell
work_keys_str_mv AT maslovaoo currentviewofmesenchymalstemcellsbiologybriefreview
AT maslovaoo sučasnípoglâdinabíologíûmezenhímalʹnihstovburovihklítinkorotkijviklad
AT maslovaoo sovremennyevzglâdynabiologiûmezenhimalʹnyhstvolovyhkletokkratkoeizloženie
first_indexed 2025-11-24T06:35:51Z
last_indexed 2025-11-24T06:35:51Z
_version_ 1849652571493367808
fulltext UDC 576.57.085.23.615.012 Current view of mesenchymal stem cells biology (brief review) O. O. Maslova Institute of Genetic and Regenerative Medicine, NAMS of Ukraine 67, Vyshgorodska Str., Kyiv, Ukraine, 04114 rotiferko@gmail.com Although mesenchymal stem cells (MSC) are in a focus of attention, some aspects of their biology are still unclear. This paper is a review of current research on MSC biology. The use of MSC in regenerative medicine is also briefly discussed. Keywords: mesenchymal stem cells, regenerative medicine, cell cultivation. Mesenchymal stem (stromal) cells (MSC) are considered to be the most promising instrument of cell and tissue engineering. However, regardless of rather long-term detailed study of MSC in the cell culture there are still uninvestigated aspects of their biology. As a main "white spot" may be considered the absence of description of MSC properties in natural niches of the organism and in artificially created cultivation con- ditions. For instance, the author of [1] writes, "Mesen- chymal stem cells (MSCs) have been well identified in cultures obtained from various human tissues. How- ever, they give no clue as to their native identity, fre- quency, or anatomical location." The objectivity of views on MSC is limited by the differences in the data about MSC properties, possibly acquired in artificial conditions of cultivation in labo- ratories, and by the attempts to adjust these properties to a specific set of phenotypic characteristics. The tra- ditional definition of MSC as "clonogenic cells, capa- ble of adhesing to plastic, expressing a specific set of surface markers and differentiating trilinearly" is insuf- ficient and requires clarification. MSC properties depend on their origin from me- senchyme – embryonic tissue, absent in the adult orga- nism. Starlike cells of mesenchyme fill the cavities in the embryo organism, synthesize the molecules of intracellular matrix and thus support its architectonics. They are capable of amoeboid motion and phagocytosis [2]. The mesenchyme is formed during gastrulation. It is most likely that this tissue originates from all three germ layers [2–4]. This is what allows MSC of the adult organism to transform into tissue cells of both meso- dermal line and ento- and ectodermal origin [3, 4]. Loo- se connective tissue is morphologically most close to the mesenchyme in the adult organism, as it contains a large amount of intercellular substance and fibroblasts. Also primitive connective tissues are reticular tissue of hematopoietic organs (bone marrow, spleen, etc.). The intermediary state between embryonic mesenchyme and adult connective tissue is taken by mucous con- nective tissue of the umbilical cord matrix (Wharton's jelly) (Fig.1) [5]. The phenomenon of reversible me- senchymal and epithelial transitions (MET-EMT) is observed both at a stage of organogenesis and during postnatal (normal and pathological) morphogenetic processes [6]. Such mutual transfers are characterized by morphological changes in cells (Table). There is an opinion that the of specificities of MET-EMT processes will allow understanding the of MSC nature in vivo [7, 8]. 190 ISSN 0233–7657. Biopolymers and Cell. 2012. Vol. 28. N 3. P. 190–198 Translated from Russian � Institute of Molecular Biology and Genetics, NAS of Ukraine, 2012 Such transitions are most frequent during the for- mation of spatial organization of organs in the embryo- genesis [9]. In the mature organism MET and EMT are remarkable for the processes of tissue regeneration as well as for the formation of fibroses, carcinomas and metastasis of tumors [10]. The transitions are regulated by the different signaling cascades [7–10]. Micro-RNA and post-translational modifications of proteins play a significant role in the mentioned processes with the impact of growth factors and cytokines [9]. Every year there appear new data on successful isolation of MSC in accord classic criteria from rather "exotic" sources, such as menstrual blood [11], teeth [12] and peripheral blood [13, 14]. According to some publications, MSC are present in the blood of healthy people [15–17], according to others – they are either absent [18] or appear only at some diseases or traumas, requiring their systemic mobilization (for instance, at severe burns) [19, 20]. It was shown that MSC from peripheral blood have properties, analogous to MSC of bone marrow [14]. However, the main attention is paid to the cells, isolated from bone marrow, adipose tissue and fetal tissues (placenta, umbilical cord, etc.) [21, 22]. Contrary to the adult organism, where the mesenchyme is completely transformed to various connective tissues, the umbilical cord as a derivative of yolk sac and allantois contains a primitive form of ex- traembryonic mesenchyme - Wharton's jelly [23]. Its predominant part consists of fibroblast-like cells, acti- vely synthesizing glycosaminoglycans. Some authors believe that MSC obtained from the umbilical cord matrix preserve not multipotent (like MSC of adults), but pluripotent [24] potential (there are data on the possibility of their expression of embryonic markers Oct4 and Tra-1-60, Tra1-81, SSEA1, SSEA-4, [25]); their immune phenotype somewhat differs from the mature one which opens additional opportunities for allotransplantations [26]. The first data on MSC were obtained in 1960–1970-s [27–31], but the issue of selecting a pro- per name for them was actively raised only in 2004–2006. Intensification of the work with these cells and expansion of sources of their isolation caused even more frequent suggestions of substituting the term "mesenchymal stem cells" with more precise definition, which would accurately reflects biological specificities of each population of these cells. The International Society for Cell Therapy recommended the term "multipotent stromal cells" [32]. However, nowadays there is less interest to terminology, therefore, the terms 191 CURRENT VIEW OF MESENCHYMAL STEM CELLS BIOLOGY (BRIEF REVIEW) Property Epithelial cells Mesenchymal cells Cellular contacts Adhesive contacts (via E-cadherin), desmosome, tight junctions Absent or weak Cytoskeleton Cytokeratins Vimentin Synthesis of extracellular matrix Laminin, collagen of type IV Fibronectin, collagens I/III Expression of proteases Absent or weak High (metalloproteinases) Morphofunctional differences between the cells of epithelial and mesenchymal type [9] á âà Fig.1 Comparison of the composition of mesenchyme and its derivatives (www.technion.ac.il/~mdcourse/): a – embryonic mesenchyme; b – mucous tissue of the umbilical cord; c – loose connective tissue 192 MASLOVA O. O. "mesenchymal stem cells" and "multipotent stromal cells" are almost as frequent in modern literature. The term "mesenchymal stem/stromal cells" also gained its ground. One of the main problems of MSC biology is that all the places of their localization in the adult organism in vivo have not been revealed yet [1, 33-35]. There are only some data about the niches of MSC in the bone marrow and perivascular sites, and it is shown that these cells can be isolated from other tissues as well. The data about MSC are related to in vitro systems [1, 33–36] and one might assume that they have a considerably modified receptor portrait due to the procedures of isolation and reseeding [37–39]. Although MSC in the culture are described in detail, nowadays there is neither a specific marker nor even a clear-cut set of markers to determine MSC in the organism. The active search for the markers optimal combination for precise identification is carried out. The International Society for Cell Therapy made an attempt to present the MSC properties according to the required criteria [32], but, unfortunately, later they were proven to be insufficient for complete characterization of MSC. According to the recent recommendations of the International Society of Cell Therapy, the properties, common for all the MSC regardless of their origin and the method of isolation, are as follows: a capability of adhesion to plastic (the property, which may be observed even in the very cell culture, not in the organism), easy differentiation into chondro-, osteo-, and adipocytes, expression of CD105, CD90, CD73 and no expression of CD34, CD45, CD11, HLA-DR [32]. The list of other surface markers has considerable variations, depending on the origin of MSC. Among newly suggested positive markers are CD13, CD29, CD271, CD166, CD146, 140b, CD106, and others [40, 41]. There are combinations of dozens and hundreds of surface markers, expressed by MSC, but there is no clear-cut recommended set yet. Some differences were also revealed in the poten- tial of differentiating the subpopulations of MSC, iso- lated from diversesources [35, 42]. Considerable difficulties are also related to the fact that the abovementioned positive markers are rather wide-spread among various cells of the organism. It makes it impossible to distinguish MSC from the neigh- boring cells, for instance, in tissue preparations. Thus, CD105 (SH2), or endoglin, which is a glycoprotein, included into the composition of the receptor complex for TGF-beta, is expressed on the surface of endothelial cells, activated macrophages, fibroblasts and cells of smooth muscles [43], which makes it impossible to distinguish MSC from these types of cells. Besides MSC, CD90, or Thy-1, is also expressed on the surface of thymocytes, neurons, hematopoietic stem cells, NK-cells, endotheliocytes, renal cells, circulating melanoma cells, follicular-dendrite cells, fibroblasts and myofibroblasts [44]. The expression of CD73 (SH3/SH4), or ecto-5`-nucleotidase, is also remarkable for oligodendrocytes, B- and T-lymphocytes, neurons, perithelial cells, fibroblasts, cardiomyocytes and other types of cells [45]. There is an opinion about the suitability of these markers for the determination of MSC in the cases, when the presence of other types of cells is disregarded completely. An assumption that the criteria for MSC deter- mination in the culture may be related to other types of cells is stated more and more frequently [1]. The most complicated is the MSC determination right in the living organism [33–35, 46]. Despite suc- cessful MSCisolation from different tissues, their natu- ral niches are described in detail only for bone marrow and perivascular regions [1, 39]. The fibroblast-like, adhesive cells, capable of trilineardifferentiation and corresponding to the phenotypic criteria of MSC, were isolated from many tissues of the adult organism. Still, it is yet to be revealed which morphofunctional pro- perties in vivo are remarkable for these cells [1]. Recen- tly there have been some reports on different types of the adult organism, which might be capable of acquir- ing the properties of MSC in the culture [1, 35]. These cells allegedly include perithelial cells, fibroblasts, myofibroblasts, reticular cells, intestinal cells and some others [47]. Most articles are devoted to fibroblasts [1, 35, 48, 49], as immediate derivatives of the mesen- chyme, and to perithelial cells [1, 50] as the cells, inha- biting one of alleged niches of MSC. There is an as- sumption that these cells are in different functional states, including multipotent one. It is also probable that a definite (very small) amount of embryonic mesen- chymal cells does not reach the final stages of dif- ferentiation and remains in the stem state as a rege- nerative pool. According to current views, MSC are a heterogeneous group of cells with stem properties [1, 35, 51]. It is considered that for better understanding of MSC state in vivo it is required thorough study of the chemical and cellular composition of MSC niches (which is currently worked on in the prominent labo- ratories of the world) as well as detailed elaboration of the notions of the functional and structural role of MSC in health and disease. Being in the natural environment inside the orga- nism, MSC interact both with molecules of the extra- cellular matrix and with each other as well as with other types of cells. According to the current data, the extra- cellular matrix is not only a mechanical support, but also a combination of ligands, launching definite signa- ling pathways via specific receptors [52]. The fate of MSC considerably depends on the matrix properties. The critical importance is attributed to both the nature of substances, surrounding the cells, and their physical characteristics, such as rigidity and flexibility (recent investigations prove that in some conditions the change in density and solidity of the substrate may play a key role in the selection of a way of MSC differentiation) [53–55]. Cell isolation from any tissue destructs (mechani- cally or enzymatically) both intercellular matrix and in- tercellular connections, thus causing considerable cha- nges in the receptor portrait [37, 38] on the surface of the isolated cells. This phenomenon may be called "re- ceptor shock" (Fig.2) which eliminates all the possi- bilities of cultivating native MSC. It is only after this serious restructuring in conditions of the culture of cells, which do not reproduce the composition of natural niches of the organism, that the cultivated material acquires the properties, described in vitro (Fig.3). The- se features help identifying MSC according to the known properties, but one should realize that they may differ from the properties of MSC, inherent to the organism. None of the current approaches to the optimization of cultivation conditions, in particular, an application of artificial or natural materials or bioreactors, allow accurate and precise reproduction of in vivo conditions. The multi-level regulation of the nervous, humoral, and immune activity of all cells in the organism is the least reproducible. Thus, summing up the abovementioned one may conclude that MSC is the name for the cells, acquiring a certain phenotype outside of the organism. One of vital issues is the possibility of long-term cultivation of MSC. According to the recent literature data, MSC are irreversibly modified with each consequent passage [37, 56, 38]. However, there are different opinions as to the passage of MSC cultivation without any loss of multipotency [57]. Some authors indicate feasible morphophysiological modifications of the cells and disorders of the expression of certain genes as early as at the stage of 2nd–3rd passages [58], others – at the 5th– 6th passage [59]. The analysis of these data allows the conclusion about the absence of standardized methods of sustaining cells in the stable multipotent state. The cultivated cells may be introduced into the ex- perimental organism with different purposes. Partial evaluation of the efficiency of introduction of the cel- lular material requires tracking the ways of its mig- ration. The modern methods of detecting the introduced MSC are as follows: PCR (RT-PCR), which allows de- termining the availability of Alu-sequences, specific for humans, and other markers in the animal organs, which were introduced with human MSC; staining with fluorescent proteins (with subsequent analysis of his- tological preparations or with the method of confocal microscopy in vivo) and labeling with radioactive 193 CURRENT VIEW OF MESENCHYMAL STEM CELLS BIOLOGY (BRIEF REVIEW) Fig.2 Schematic presentation of some cell modifications during obtaining the culture particles; PET technology (positron emission tomo- graphy), magnetic resonance investigations [60–62]. According to the literature data, describing the distri- bution of MSC, systemically introduced into organisms of experimental animals from different sources, the cells are firstly detected in the lungs (approximately 70 %), later they may be tracked in the liver (up to 15 %), kidneys (up to 20 %), spleen, heart and blood flow [62]. The data about the presence of the introduced MSC in the bone marrow are ambiguous. Some authors demon- strate the presence of exogenous MSC in the bone mar- row [63], while others do not observed this phenome- non [64]. Up till now there is no univocal answer to the question, whether MSC are capable of self-destruction after the excretion of specific substances, whether they are transformed into the types of cells, necessary for the damaged organ, or undergo no modifications. Various approaches in vivo allow understanding the specificities of homing and distribution of introduced cells. However, taking into consideration the potential modifications, inherent to pre-cultivated material, it is difficult to determine the MSC localization in tissue and organs [1, 65]. Therefore, one of urgent tasks is the search for difference in the states of cells following the scheme: presence in a niche – isolation from the tissue – cultivation – introduction into the organism – formation of a new niche on request (with subsequent differentiation or self-destruction after the release of paracrine factors, etc.) Regardless of the mentioned difficulties, the cultivated MSC are already used in regenerative therapy [64–67]. There are attempts to decrease the impact of cultivation on MSC metabolism and to preserve their original characteristics. The xenogenic, allogenic, and autologous variants of MSC application were tested in experiments on animals. Human MSC are also actively introduced in clinical practice. The issue of clinical application of MSC from various sources has been highlighted in a number of extensive reviews [68–73], therefore, this work will only present a brief outline of the main approaches in regenerative medicine, where the application of MSC is required. There are several works, where cellular material was used in the phases 1– 3 of clinical trial [74, 75], however, the results are rather ambiguous. The stages 1 and 2 were rather successful in the most cases, but there was some disagreement about the stage 3, concerning suitability of application of MSC compared to traditional medical preparations. The review, cited in [76], is devoted to the discussion of this issue. The cells, cultivated in vitro, may be introduced to the patient either locally (as, for instance, in case of treating joints or repairing wounds) or systemically (in particular, for the myocardial infarction). Systemic introduction requires the application of a suspension or cellular aggregates of minimal size in order to eliminate the risk of embolism. The application of MSC as carriers of certain substances (the most wide-spread among them being antitumor preparations) seems to be more and more probable [77]. The MSC with in-built genetic constructions acquire the capability of synthesizing and releasing the required substances [46, 77]. The problems, occurring in the course of applying MSC in regenerative medicine, are as follows: selection of optimal sources, cultivation without loss of stem characteristics, selection of an adequate method of introduction into the organism, possibility of tracking the fate of introduced material in the organism. Although the clinical aspects are not reviewed in this work in detail, it is noteworthy to indicate the fields, where this material may be used, and to discuss shortly the reasons of MSC application. According to the literature data, the pathologies, which may be treated using MSC, include neurodegenerative [78] and autoimmune diseases [79, 80], cardiovascular diseases [81], strokes [82], diseases of locomotor system [83], traumas [84], tumors, including sarcomas [85]. The 194 MASLOVA O. O. Fig.3 MSC culture, isolated from the matrix of human umbilical cord, passage 1, unstained; x100 application of MSC in the clinical practice is related to their potential impact on the immune response [86], to the expressed paracrine effects (for instance, release of growth factors and cytokines) [68], and participation in the restoration of damaged tissues [87]. A number of modern studies indicate a considerably important role of paracrine effects of MSC introduction. Due to the capability of MSC to secrete growth factors, cytokines, and chemokines they may regulate the state of microenvironment and thus stimulate the regeneration of tissues. Numerous works are devoted also to the immunomodulating effects of MSC , in particular, their impact on various stages of the immune response was demonstrated in[88–91]. The analysis of current views on MSC biology allows the following conclusions: – specific anatomic localization of MSC in the adult organism is determined only for the bone marrow, although these cells were detected in other tissues as well; – up to now there is no definite formulation of a concept about MSC natural niches ; – the procedures of MSC cultivation outside of the organism result in the changes in the receptor portrait and other characteristics of MSC, which does not permit precise evaluation of their properties; – it still remains vague an issue of selecting maximally exhaustive markers, distinguishing MSC from other cells with similar phenotypic properties and allowing to demonstrate the MSC pool in different tissues. More accurate definition may be proposed: MSC in culture is a heterogeneous group of multipotent cells, which are likely to acquire certain phenotypic properties after the isolation from different tissues: the expression of a set of surface markers, adhesion to plastic, capability of induced differentiation. Thus, the understanding of cytological and biochemical specificities of MSC not only in culture, but also in living organism, is a key issue, the solution of which is required for their more efficient and safe application in clinical practice. Current works, directed towards the preparation of MSC for their application in regenerative medicine, should be aimed at decreasing the consequences of cell cultivation and search for the ways of their long-term sustaining in the culture without any modifications. Î. À. Ìàñëîâà Ñîâðåìåííûå âçãëÿäû íà áèîëîãèþ ìåçåíõèìàëüíûõ ñòâîëîâûõ êëåòîê (êðàòêîå èçëîæåíèå) ÃÓ «Èíñòèòóò ãåíåòè÷åñêîé è ðåãåíåðàòèâíîé ìåäèöèíû ÍÀÌÍÓ» Óë. Âûøãîðîäñêàÿ, 67, Êèåâ, Óêðàèíà, 04114  íàñòîÿùåå âðåìÿ ìåçåíõèìàëüíûì ñòâîëîâûì êëåòêàì (ÌÑÊ) óäåëÿåòñÿ äîñòàòî÷íî áîëüøîå âíèìàíèå, îäíàêî äî ñèõ ïîð íå ðàñêðûòûìè îñòàþòñÿ íåêîòîðûå àñïåêòû èõ áèîëîãèè.  îáçî- ðå ïðåäñòàâëåíû ìàòåðèàëû ñîâðåìåííûõ èññëåäîâàíèé, ïîñâÿ- ùåííûå ïðîáëåìíûì âîïðîñàì áèîëîãèè ÌÑÊ. Êðàòêî îáñóæäàåòñÿ âîçìîæíîñòü èñïîëüçîâàíèÿ ÌÑÊ â ðåãåíåðàòèâ- íîé ìåäèöèíå Êëþ÷åâûå ñëîâà: ìåçåíõèìàëüíûå ñòâîëîâûå êëåòêè, ðåãå- íåðàòèâíàÿ ìåäèöèíà, êóëüòèâèðîâàíèå êëåòîê Î. Î. Ìàñëîâà Ñó÷àñí³ ïîãëÿäè íà á³îëîã³þ ìåçåíõ³ìàëüíèõ ñòîâáóðîâèõ êë³òèí (êîðîòêèé âèêëàä) Íà ñüîãîäí³ ìåçåíõ³ìàëüíèì ñòîâáóðîâèì êë³òèíàì (ÌÑÊ) ïðè- ä³ëÿþòü äîñèòü çíà÷íó óâàãó, îäíàê äîñ³ íå ðîçêðèòèìè çàëèøà- þòüñÿ äåÿê³ àñïåêòè ¿õíüî¿ á³îëî㳿.  îãëÿä³ ïðåäñòàâëåíî ìà- òåð³àëè ñó÷àñíèõ äîñë³äæåíü, ïðèñâÿ÷åíèõ ïðîáëåìíèì ïèòàí- íÿì á³îëî㳿 ÌÑÊ. Êîðîòêî îáãîâîðþºòüñÿ ìîæëèâ³ñòü âèêîðè- ñòàííÿ ÌÑÊ ó ðåãåíåðàòèâí³é ìåäèöèí³. Êëþ÷îâ³ ñëîâà: ìåçåíõ³ìàëüí³ ñòîâáóðîâ³ êë³òèíè, ðåãåíåðà- òèâíà ìåäèöèíà,êóëüòèâóâàííÿ êë³òèí. REFERENCES 1. Can A. Searching for in vivo traces of mesenchymal stem cells and their ancestors // Adult and embryonic stem cells / Ed. K. Turksen.–Amsterdam: Springer, 2012.–Ð. 11–24. 2. Strum J. M., Gartner L. P., Hiatt J. L. Cell biology and histo- logy.–Hagerstwon: Lippincott Williams & Wilkins, 2007.–83 p. 3. Gunin A. G. Gistologiya v tablitsah i schemah.–Moscow: PÌ, 2009.–83 p. 4. Selezneva T., Mishyn A., Barsukow V. Gistologiya: polnyi kurs za tri dnya.–Moscow: Eksmo, 2007.–354 p. 5. Taghizadeh R. R., Cetrulo K. J., Cetrulo C. L. Wharton’s jelly stem cells: future clinical applications // Placenta.–2011.–32, Suppl 4.–S311–315. 6. Lee R. H., Pulin A. A., Seo M. J., Kota D. J., Ylostalo J., Larson B. L., Semprun-Prieto L., Delafontaine P., Prockop D. J. Intra- venous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-in- flammatory protein TSG-6 // Cell Stem Cell.–2009.–5, N 1.– P. 54–63. 7. Wang Z., Li Y., Ahmad A., Azmi A. S., Kong D., Banerjee S., Sar- kar F. H. Targeting miRNAs involved in cancer stem cell and EMT regulation: an emerging concept in overcoming drug resis- tance // Drug Resist. Updat.–2010.–13, N 4–5.–P. 109–118. 8. Thiery J. P., Acloque H., Huang R. Y., Nieto M. A. Epithelial- mesenchymal transitions in development and disease // Cell.– 2009.–139, N 5.–P. 871–890. 195 CURRENT VIEW OF MESENCHYMAL STEM CELLS BIOLOGY (BRIEF REVIEW) 9. Kalluri R. EMT: when epithelial cells decide to become mesen- chymal-like cells // J. Clin. Invest.–2009.–119, N 6.–P. 1417– 1419. 10. Kalluri R., Zeisberg M. Fibroblasts in cancer // Nat. Rev. Cancer.– 2006.–6, N 5.–P. 392–401. 11. Patel A. N., Park E., Kuzman M., Benetti F., Silva F. J., Allick- son J. G. Multipotent menstrual blood stromal stem cells: isola- tion, characterization, and differentiation // Cell Transplant.– 2008.–17, N 3.–P. 303–311. 12. Huang G. T., Gronthos S., Shi S. Mesenchymal stem cells deri- ved from dental tissues vs. those from other sources: their biolo- gy and role in regenerative medicine // J. Dent. Res.–2009.–88, N 9.–P. 792–806. 13. Ukai R., Honmou O., Harada K., Houkin K., Hamada H., Kocsis J. D. Mesenchymal stem cells derived from peripheral blood protects against ischemia // J. Neurotrauma.–2007.–24, N 3.– P. 508–520. 14. Chong P. P., Selvaratnam L., Abbas A. A., Kamarul T. Human peripheral blood derived mesenchymal stem cells demonstrate similar characteristics and chondrogenic differentiation poten- tial to bone marrow derived mesenchymal stem cells // J. Orthop. Res.–2012.–30, N 4.–P. 634–642. 15. Rochefort G. Y., Delorme B., Lopez A., Herault O., Bonnet P., Charbord P., Eder V., Domenech J. Multipotential mesenchy- mal stem cells are mobilized into peripheral blood by hypoxia // Stem Cells.–2006.–24, N 10.–P. 2202–2208. 16. Zvaifler N. J., Marinova-Mutafchieva L., Adams G., Edwards C. J., Moss J., Burger J., Maini R. N. Mesenchymal precursor cells in the blood of normal individuals // Arthritis Res.–2000.–2, N 6.– P. 477–488. 17. Kuznetsov S. A., Mankani M. H., Gronthos S., Satomura K., Bianco P., Robey P. G. Circulating skeletal stem cells // J. Cell Biol.–2001.–153, N 5 –P. 1133–1140. 18. Wexler S. A., Donaldson C., Denning-Kendall P., Rice C., Brad- ley B., Hows J. M. Adult bone marrow is a rich source of human mesenchymal «stem» cells but umbilical cord and mobilized adult blood are not // Br. J. Haematol.–2003.–121, N 2 –P. 368–374. 19. Mansilla E., Marin G. H., Drago H., Sturla F., Salas E., Gardi- ner C., Bossi S., Lamonega R., Guzman A., Nunez A., Gil M. A., Piccinelli G., Ibar R., Soratti C. Bloodstream cells phenotypical- ly identical to human mesenchymal bone marrow stem cells circulate in large amounts under the influence of acute large skin damage: new evidence for their use in regenerative medicine // Transplant. Proc.–2006.–38, N 3.–P. 967–969. 20. Kassis I., Zangi L., Rivkin R., Levdansky L., Samuel S., Marx G., Gorodetsky R. Isolation of mesenchymal stem cells from G- CSF-mobilized human peripheral blood using fibrin microbeads // Bone Marrow Transplant.–2006.–37, N 10.–P. 967–976. 21. Hass R., Kasper C., Bohm S., Jacobs R. Different populations and sources of human mesenchymal stem cells (MSC): a compa- rison of adult and neonatal tissue-derived MSC // Cell Commun. Signal.–2011.–9.–P. 12. 22. Bieback K., Brinkmann I. Mesenchymal stromal cells from hu- man perinatal tissues: from biology to cell therapy // World J. Stem Cells.–2010.–2, N 4.–P. 81–92. 23. Can A., Karahuseyinoglu S. Concise review: human umbilical cord stroma with regard to the source of fetus-derived stem cells // Stem Cells.–2007.–25, N 11.–P. 2886–2895. 24. Fong C. Y., Richards M., Manasi N., Biswas A., Bongso A. Com- parative growth behaviour and characterization of stem cells from human Wharton’s jelly // Reprod. Biomed. Online.– 2007.–15, N 6.–P. 708–718. 25. Anzalone R., Lo Iacono M., Corrao S., Magno F., Loria T., Cappello F., Zummo G., Farina F., La Rocca G. New emerging potentials for human Wharton’s jelly mesenchymal stem cells: immunological features and hepatocyte-like differentiative capacity // Stem Cells Dev.–2010.–19, N 4.–P. 423–438. 26. Fong C. Y., Chak L. L., Biswas A., Tan J. H., Gauthaman K., Chan W. K., Bongso A. Human Wharton’s jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells // Stem Cell Rev.– 2011.–7, N 1.–P. 1–16. 27. Becker A. J., McCulloch E. A., Till J. E. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells // Nature.–1963.–197, N 4866.–P. 452–454. 28. Siminovitch L., McCulloch E. A., Till J. E. The distribution of co- lony-forming cells among spleen colonies // J. Cell. Comp. Phy- siol.– 1963.–62, N 3.–P. 327–336. 29. Friedenstein A. J., Deriglasova U. F., Kulagina N. N., Panasuk A. F., Rudakowa S. F., Luria E. A., Ruadkow I. A. Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method // Exp. Hematol.– 1974.–2, N 2.–P. 83–92. 30. Friedenstein A. J., Gorskaja J. F., Kulagina N. N. Fibroblast pre- cursors in normal and irradiated mouse hematopoietic organs // Exp. Hematol.–1976.–4, N 5.–P. 267–274. 31. Pittenger M. F., Mackay A. M., Beck S. C., Jaiswal R. K., Doug- las R., Mosca J. D., Moorman M. A., Simonetti D. W., Craig S., Marshak D. R. Multilineage potential of adult human mesen- chymal stem cells // Science.–1999.–284, N 5411.–P. 143–147. 32. Dominici M., Le Blanc K., Mueller I., Slaper-Cortenbach I., Ma- rini F., Krause D., Deans R., Keating A., Prockop Dj., Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement // Cytotherapy.–2006.–8, N 4.–P. 315–317. 33. Augello A., Kurth T. B., De Bari C. Mesenchymal stem cells: a perspective from in vitro cultures to in vivo migration and niche // Eur. Cell Mater.–2010.–20.–P. 121–133. 34. Lindner U., Kramer J., Rohwedel J., Schlenke P. Mesenchymal stem or stromal cells: toward a better understanding of their bio- logy? // Transfus. Med. Hemother.–2010.–37, N 2 –P. 75–83. 35. Ulrich C., Hart M. L., Rolauffs B., Abele H., Gotze M., Benz K., Aicher W. K. Mesenchymal stromal cells and fibroblasts // J. Tissue Sci. Eng.–2012.–3.–e109. 36. Nombela-Arrieta C., Ritz J., Silberstein L. E. The elusive nature and function of mesenchymal stem cells // Nat. Rev. Mol. Cell Biol.–2011.–12, N 2.–P. 126–131. 37. Rombouts W. J., Ploemacher R. E. Primary murine MSC show highly effcient homing to the bone marrow but lose homing abili- ty following culture // Leukemia.–2003.–17, N 1.–Ð. 160–170. 38. Sarkar D., Spencer J. A., Phillips J. A., Zhao W., Schafer S., Spel- ke D. P., Mortensen L. J., Ruiz J. P., Vemula P. K., Sridharan R., Kumar S., Karnik R., Lin C. P., Karp J. M. Engineered cell ho- ming // Blood.–2011.–118, N 25.–e184–191. 39. Jones E., McGonagle D. Human bone marrow mesenchymal stem cells in vivo // Rheumatology (Oxford).–2008.–47, N 2.– P. 126–131. 40. Buhring H. J., Battula V. L., Treml S., Schewe B., Kanz L., Vogel W. Novel markers for the prospective isolation of human MSC // Ann. N. Y. Acad. Sci.–2007.–1106.–P. 262–271. 41. Covas D. T., Panepucci R. A., Fontes A. M., Silva W. A., Orella- na M. D., Freitas M. C., Neder L., Santos A. R., Peres L. C., Ja- mur M. C., Zago M. A. Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties 196 MASLOVA O. O. and gene-expression profile with CD146 + perivascular cells and fibroblasts // Exp. Hematol.–2008.–36, N 5.–P. 642–654. 42. Molchanova E. A., Bueverova E. I., Starostin V. I., Domaratskaya E. I. The sensitivity of mesenchymal stromal cells subpopulations with different adhesion properties and derived from hemopoie- tic organs // Izv. Akad. Nauk Ser. Biol.–2011.–N 2.– P. 133–144. 43. Bussolati B., Bruno S., Grange C., Ferrando U., Camussi G. Identification of a tumor-initiating stem cell population in hu- man renal carcinomas // FASEB J.–2008.–22, N 10.–P. 3696– 3705. 44. De Francesco F., Tirino V., Desiderio V., Ferraro G., D’Andrea F., Giuliano M., Libondi G., Pirozzi G., De Rosa A., Papaccio G. Human CD34 + /CD90 + ASCs are capable of growing as sphere clusters, producing high levels of VEGF and forming capillaries // PLoS ONE.–2009.–4, N 8.–e6537. 45. Hunsucker S. A., Mitchell B. S., Spychala J. The 5'-nucleotida- ses as regulators of nucleotide and drug metabolism // Pharma- col. Ther.–2005.–107, N 1.–P. 1–30. 46. Baksh D., Song L., Tuan R. S. Adult mesenchymal stem cells: characterization, differentiation, and application in cell and ge- ne therapy // J. Cell. Mol. Med.–2004.–8, N 3.–P. 301–316. 47. Corselli M., Chen C. W., Crisan M., Lazzari L., Peault B. Peri- vascular ancestors of adult multipotent stem cells // Àrterioscler. Thromb. Vasc. Biol.–2010.–30, N 6.–P. 1104–1109. 48. Haniffa M. A., Collin M. P., Buckley C. D., Dazzi F. Mesenchy- mal stem cells: the fibroblasts’ new clothes? // Haematologica.– 2008.–94, N 2.–P. 258–263. 49. Bozo I., Deev R. V., Pinaev G. P. Is «fibroblast» a specialized cell or a functional condition of mesenchymal cells derivatives? // Tsitologiia.–2010.–52, N 2.–P. 99–109. 50. Crisan M., Yap S., Casteilla L., Chen C. W., Corselli M., Park T. S., Andriolo G., Sun B., Zheng B., Zhang L., Norotte C., Teng P. N., Traas J., Schugar R., Deasy B. M., Badylak S., Buhring H. J., Giacobino J. P., Lazzari L., Huard J., Peault B. A perivascular origin for mesenchymal stem cells in multiple human organs // Cell Stem Cell.–2008.–3, N 3.–P. 301–313. 51. Wuchter P., Wagner W., Ho A. D. Mesenchymal stem cells: an oversimplified nomenclature for extremely heterogeneous pro- genitors // Regenerative Medicine / Ed. G. Steinhoff.–Heidelberg: Springer, 2011.–Pt 2.–P. 377–395. 52. Reilly G. C., Engler A. J. Intrinsic extracellular matrix proper- ties regulate stem cell differentiation // J. Biomech.–2010.–43, N 1.–P. 55–62. 53. Tse J. R., Engler A. J. Stiffness gradients mimicking in vivo tis- sue variation regulate mesenchymal stem cell fate // PLoS ONE.– 2011.–6, N 1.–e15978. 54. Peyton S. R., Kalcioglu Z. I., Cohen J. C., Runkle A. P., Van Vliet K. J., Lauffenburger D. A., Griffith L. G. Marrow-derived stem cell motility in 3D synthetic scaffold is governed by geometry along with adhesivity and stiffness // Biotechnol. Bioeng.– 2011.–108, N 5–P. 1181–1193. 55. Huebsch N., Arany P. R., Mao A. S., Shvartsman D., Ali O. A., Bencherif S. A., Rivera-Feliciano J., Mooney D. J. Harnessing traction-mediated manipulation of the cell/matrix interface to control stem-cell fate // Nat. Mater.–2010.–9, N 6. –P. 518–526. 56. Wagner W., Horn P., Castoldi M., Diehlmann A., Bork S., Saf- frich R., Benes V., Blake J., Pfister S., Eckstein V., Ho A. D. Re- plicative senescence of mesenchymal stem cells: a continuous and organized process // PLoS ONE.–2008.–3, N 5.–e2213. 57. Osipova E. Y., Shamanskaya T. V., Kurakina O. A., Nikitina V. A., Purbueva B. B., Ustugov A. Y., Kachanov D. Y., Skorobogatova E. V., Dishlevaya Z. M., Roumiantsev S. A. Biological characte- ristics of mesenchymal stem cells during ex vivo expansion // Br. J. Med. Med. Res.–2011.–1, N 3.–P. 85–95. 58. Angelucci S., Marchisio M., Di Giuseppe F., Pierdomenico L., Sulpizio M., Eleuterio E., Lanuti P., Sabatino G., Miscia S., Di Ilio C. Proteome analysis of human Wharton’s jelly cells during in vitro expansion // Proteome Sci.–2010.–8.–P. 18. 59. Chong P. P., Selvaratnam L., Abbas A. A., Kamarul T. Human peripheral blood derived mesenchymal stem cells demonstrate similar characteristics and chondrogenic differentiation potential to bone marrow derived mesenchymal stem cells // J. Orthop. Res.–2012.–30, N 4.–P. 634–642. 60. Kraitchman D. L., Tatsumi M., Gilson W. D., Ishimori T., Ked- ziorek D., Walczak P., Segars W. P., Chen H. H., Fritzges D., Izbudak I., Young R. G., Marcelino M., Pittenger M. F., So- laiyappan M., Boston R. C., Tsui B. M., Wahl R. L., Bulte J. W. Dynamic imaging of allogeneic mesenchymal stem cells traffi- cking to myocardial infarction // Circulation.–2005.–112, N 10.– P. 1451–1461. 61. Hara M., Murakami T., Kobayashi E. In vivo bioimaging using photogenic rats: fate of injected bone marrow-derived mesenchy- mal stromal cells // J. Autoimmun.–2008.–30, N 3 –P. 163–171. 62. Schmidtke-Schrezenmeier G., Urban M., Musyanovych A., Mai- lander V., Rojewski M., Fekete N., Menard C., Deak E., Tarte K., Rasche V., Landfester K., Schrezenmeier H. Labeling of mesen- chymal stromal cells with iron oxide-poly(L-lactide) nanopartic- les for magnetic resonance imaging: uptake, persistence, effects on cellular function and magnetic resonance imaging properties // Cytotherapy.–2011.–13, N 8.–P. 962–975. 63. Li Z. H.., Liao W., Cui X. L., Zhao Q., Liu M., Chen Y. H., Liu T. S., Liu N. L., Wang F, Yi Y., Shao N. S. Intravenous transplanta- tion of allogeneic bone marrow mesenchymal stem cells and its directional migration to the necrotic femoral head // Int. J. Med. Sci.–2011.–8, N 1.–P. 74–83. 64. Spencer N. D., Gimble J. M., Lopez M. J. Mesenchymal stromal cells: past, present, and future // Vet. Surg.–2011.–40, N 2.– P. 129–139. 65. Mani S. A., Guo W., Liao M. J., Eaton E. N., Ayyanan A., Zhou A. Y., Brooks M., Reinhard F., Zhang C. C., Shipitsin M., Campbell L. L., Polyak K., Brisken C., Yang J., Weinberg R. A.The epithe- lial-mesenchymal transition generates cells with properties of stem cells // Cell.–2008.–133, N 4.–P. 704–715. 66. Bianco P., Robey P. G., Simmons P. J. Mesenchymal stem cells: revisiting history, concepts, and assays // Cell Stem Cell.–2008.– 2, N 4.–P. 313–319. 67. Salem H. K., Thiemermann C. Mesenchymal stromal cells: cur- rent understanding and clinical status // Stem Cells.–2010.–28, N 3.–P. 585–596. 68. Bernardo M. E., Pagliara D., Locatelli F. Mesenchymal stromal cell therapy: a revolution in regenerative medicine? // Bone Mar- row Transplant.–2012.–47, N 2.–P. 164–171. 69. Herberts C. A., Kwa M. S., Hermsen H. P. Risk factors in the de- velopment of stem cell therapy // J. Transl. Med.–2011.–9.–P. 29. 70. Sensebe L., Bourin P., Tarte K. Good manufacturing practices production of mesenchymal stem/stromal cells // Hum. Gene Ther.–2011.–22, N 1.–P. 19–26. 71. Lasala G. P., Minguell J. J. Vascular disease and stem cell thera- pies // Br. Med. Bull.–2011.–98.–P. 187–197. 72. Si Y. L., Zhao Y. L., Hao H. J., Fu X. B., Han W. D. MSCs: Bio- logical characteristics, clinical applications and their outstan- ding concerns // Ageing Res. Rev.–2011.–10, N 1.–P. 93–103. 73. Parekkadan B., Milwid J. M. Mesenchymal stem cells as thera- peutics // Annu. Rev. Biomed. Eng.–2010.–12.–P. 87–117. 74. Mazzini L., Ferrerob I., Luparello V., Rustichelli D., Gunetti M., Mareschi K., Testa L., Stecco A., Tarletti R., Miglioretti M., Fa- va E., Nasuelli N., Cisari C., Massara M., Vercelli R., Oggioni G., Carriero A., Cantello R., Monaco F., Fagioli F. Mesenchy- 197 CURRENT VIEW OF MESENCHYMAL STEM CELLS BIOLOGY (BRIEF REVIEW) 198 MASLOVA O. O. mal stem cell transplantation in amyotrophic lateral sclerosis: A Phase I clinical trial // Exp. Neurol.–2010.–223, N 1.–P. 229–237. 75. Bourin P., Sensebe L., Planat-Benard V., Roncalli J., Bura-Ri- viere A., Casteilla L. Culture and use of mesenchymal stromal cells in phase I and II clinical trials // Stem Cells Int.–2010.– 2010.–doi:10.4061/2010/503593. 76. Ankrum J., Karp J. M. Mesenchymal stem cell therapy: two steps forward, one step back // Trends Mol. Med.–2010.–16, N 5.– P. 203–209. 77. Loebinger M. R., Janes S. M. Stem cells as vectors for antitu- mour therapy // Thorax.–2010.–65, N 4.–P. 362–369. 78. Joyce N., Annett G., Wirthlin L., Olson S., Bauer G., Nolta J. Me- senchymal stem cells for the treatment of neurodegenerative disease // Regen. Med.–2010.–5, N 6.–P. 933–946. 79. Uccelli A., Prockop D. J. Why should mesenchymal stem cells (MSCs) cure autoimmune diseases? // Curr. Opin. Immunol.– 2010.–22, N 6.–P. 768–774. 80. Tyndall A., Uccelli A. Multipotent mesenchymal stromal cells for autoimmune diseases: teaching new dogs old tricks // Bone Marrow Transplant.–2009.–43, N 11.–P. 821–828. 81. Hatzistergos K. E., Blum A., Ince T., Grichnik J. M., Hare J. M. What is the oncologic risk of stem cell treatment for heart disea- se? // Circ. Res.–2011.–108, N 11.–P. 1300–1303. 82. Lee J. S., Hong J. M., Moon G. J., Lee P. H., Ahn Y. H., Bang O. Y. A long-term follow-up study of intravenous autologous mesen- chymal stem cell transplantation in patients with ischemic stroke // Stem Cells.–2010.–28, N 6.–P. 1099–1106. 83. Richter W. Mesenchymal stem cells and cartilage in situ regene- ration // J. Intern. Med.–2009.–266, N 4.–P. 390–405. 84. Jackson W. M., Lozito T. P., Djouad F., Kuhn N. Z., Nesti L. J., Tuan R. S. Differentiation and regeneration potential of mesen- chymal progenitor cells derived from traumatized muscle tissue // J. Cell Mol. Med.–2011.–15, N 11.–P. 2377–2388. 85. Ciavarella S., Dominici M., Dammacco F., Silvestris F. Mesen- chymal stem cells: a new promise in anticancer therapy // Stem Cells Dev.–2011.–20, N 1–P. 1–10. 86. Herrero C., Perez-Simon J. A. Immunomodulatory effect of me- senchymal stem cells // Braz. J. Med. Biol. Res.–2010.–43, N 5.– P. 425–430. 87. Hanson S. E., Gutowski K. A., Hematti P. Clinical applications of mesenchymal stem cells in soft tissue augmentation // Aesthet. Surg. J.–2010.–30, N 6.–P. 838–842. 88. Hoogduijn M. J., Roemeling-van Rhijn M., Korevaar S. S., En- gela A. U., Weimar W., Baan C. C. Immunological aspects of al- logeneic and autologous mesenchymal stem cell therapies // Hum. Gene Ther.–2011.–22, N 12.–P. 1587–1591. 89. Menard C., Tarte K. Immunosuppression and mesenchymal stem cells: back to the future // Med. Sci. (Paris).–2011.–27, N 3.– P. 269–274. 90. Marigo I., Dazzi F. The immunomodulatory properties of mesen- chymal stem cells // Semin. Immunopathol.–2011.–33, N 6.– P. 593–602. 91. Hoogduijn M. J., Popp F., Verbeek R., Masoodi M., Nicolaou A., Baan C., Dahlke M. H. The immunomodulatory properties of mesenchymal stem cells and their use for immunotherapy // Int. Immunopharmacol.–2010.–10, N 12.–P. 1496–1500. Received 11.11.11