Human and bacterial DNA polymerases discriminate against 8-oxo-2'-deoxyadenosine- 5'-triphosphate
Цель. 8-оксоаденин – распространенное поврежденное основание, ассоциированное с онкологическими и нейродегенеративными заболеваниями. Оно может возникать вследствие непосредственного окисления аденина в ДНК или при включении окисленного dNTP. Методы. Разработан эффективный способ синтеза 8-оксо-2...
Gespeichert in:
| Veröffentlicht in: | Вiopolymers and Cell |
|---|---|
| Datum: | 2012 |
| Hauptverfasser: | , , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут молекулярної біології і генетики НАН України
2012
|
| Schlagworte: | |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/156932 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Human and bacterial DNA polymerases discriminate against 8-oxo-2'-deoxyadenosine- 5'-triphosphate / I.R. Grin, S.V. Vasilyeva, A.P. Dovgerd, V.N. Silnikov, D.O. Zharkov // Вiopolymers and Cell. — 2012. — Т. 28, № 4. — С. 306-309. — Бібліогр.: 13 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-156932 |
|---|---|
| record_format |
dspace |
| spelling |
Grin, I.R. Vasilyeva, S.V. Dovgerd, A.P. Silnikov, V.N. Zharkov, D.O. 2019-06-19T10:58:49Z 2019-06-19T10:58:49Z 2012 Human and bacterial DNA polymerases discriminate against 8-oxo-2'-deoxyadenosine- 5'-triphosphate / I.R. Grin, S.V. Vasilyeva, A.P. Dovgerd, V.N. Silnikov, D.O. Zharkov // Вiopolymers and Cell. — 2012. — Т. 28, № 4. — С. 306-309. — Бібліогр.: 13 назв. — англ. 0233-7657 https://nasplib.isofts.kiev.ua/handle/123456789/156932 577.213.38 Цель. 8-оксоаденин – распространенное поврежденное основание, ассоциированное с онкологическими и нейродегенеративными заболеваниями. Оно может возникать вследствие непосредственного окисления аденина в ДНК или при включении окисленного dNTP. Методы. Разработан эффективный способ синтеза 8-оксо-2'-дезоксиаденозин-5'-трифосфата и изучено его включение в ДНК разными ДНК-полимеразами. Результаты. Фрагмент Кленова ДНК-полимеразы I с невысокой эффективностью включал oA напротив гуанина. Для ДНК-полимеразы наблюдалось ограниченное включение oA напротив гуанина и аденина, а для ДНК-полимеразы b – напротив аденина, тимина и гуанина. Выводы. Как источник oA в геноме окисление аденина в ДНК может иметь большее значение, чем окисление dATP. Kлючевые слова: мутагенез, повреждение ДНК, оксидативный стресс, 8-оксоаденин, ДНК полимеразы. Мета. 8-оксоаденін – розповсюджена пошкоджена основа, асо- ційована з онкологічними і нейродегенеративними захворюваннями. Воно може виникати внаслідок безпосереднього окиснення аденіну в ДНК або при вбудовуванні окисненого dNTP. Методи. Розроблено ефективний спосіб синтезу 8-оксо-2'-дезоксиаденозин-5'-трифосфату і вивчено його включення в ДНК різними ДНК- полімеразами. Результати. Фрагмент Кленова ДНК-полі- мерази I з невисокою ефективністю включав oA навпроти гуаніну. Для ДНК-полімерази спостерігалося обмежене включення oA навпроти гуаніну і аденіну, а для ДНК-полімерази b – навпроти аденіну, тиміну і гуаніну. Висновки. Як джерело oA в геномі окиснення аденіну в ДНК може мати більше значення, ніж окиснення dATP. Ключові слова: мутагенез, пошкодження ДНК, оксидативний стрес, 8-оксоаденін, ДНК-полімерази. Aim. 8-Oxoadenine is an abundant DNA lesion associated with cancer and neurodegeneration. It may appear through direct oxidation of adenine in DNA or by incorporation from the oxidized dNTP pool. Methods. We developed an efficient method of synthesizing 8-oxo-2'-deoxyadenosine-5'-triphosphate and studied its incorporation by various DNA polymerases. Results. oA was weakly misincorporated opposite guanine by the DNA polymerase I Klenow fragment. Limited incorporation of oA was observed opposite guanine and adenine with DNA polymerase a, and opposite adenine, thymine and guanine with DNA polymerase b. Conclusions. Adenine oxidation in DNA may outweigh damage to dATP as a source of genomic oA. Keywords: mutagenesis, DNA damage, oxidative stress, 8-oxoadenine, DNA polymerases. en Інститут молекулярної біології і генетики НАН України Вiopolymers and Cell Short Communications Human and bacterial DNA polymerases discriminate against 8-oxo-2'-deoxyadenosine- 5'-triphosphate Дискримінація 8-оксо-2'-дезоксиаденозин-5'-трифосфату ДНК-полімеразами бактерій і людини Дискриминация 8-оксо-2'-дезоксиаденозин-5'-трифосфата ДНК-полимеразами бактерий и человека Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Human and bacterial DNA polymerases discriminate against 8-oxo-2'-deoxyadenosine- 5'-triphosphate |
| spellingShingle |
Human and bacterial DNA polymerases discriminate against 8-oxo-2'-deoxyadenosine- 5'-triphosphate Grin, I.R. Vasilyeva, S.V. Dovgerd, A.P. Silnikov, V.N. Zharkov, D.O. Short Communications |
| title_short |
Human and bacterial DNA polymerases discriminate against 8-oxo-2'-deoxyadenosine- 5'-triphosphate |
| title_full |
Human and bacterial DNA polymerases discriminate against 8-oxo-2'-deoxyadenosine- 5'-triphosphate |
| title_fullStr |
Human and bacterial DNA polymerases discriminate against 8-oxo-2'-deoxyadenosine- 5'-triphosphate |
| title_full_unstemmed |
Human and bacterial DNA polymerases discriminate against 8-oxo-2'-deoxyadenosine- 5'-triphosphate |
| title_sort |
human and bacterial dna polymerases discriminate against 8-oxo-2'-deoxyadenosine- 5'-triphosphate |
| author |
Grin, I.R. Vasilyeva, S.V. Dovgerd, A.P. Silnikov, V.N. Zharkov, D.O. |
| author_facet |
Grin, I.R. Vasilyeva, S.V. Dovgerd, A.P. Silnikov, V.N. Zharkov, D.O. |
| topic |
Short Communications |
| topic_facet |
Short Communications |
| publishDate |
2012 |
| language |
English |
| container_title |
Вiopolymers and Cell |
| publisher |
Інститут молекулярної біології і генетики НАН України |
| format |
Article |
| title_alt |
Дискримінація 8-оксо-2'-дезоксиаденозин-5'-трифосфату ДНК-полімеразами бактерій і людини Дискриминация 8-оксо-2'-дезоксиаденозин-5'-трифосфата ДНК-полимеразами бактерий и человека |
| description |
Цель. 8-оксоаденин – распространенное поврежденное основание, ассоциированное с онкологическими и нейродегенеративными заболеваниями. Оно может возникать вследствие непосредственного окисления аденина в ДНК или при включении окисленного dNTP. Методы. Разработан эффективный способ синтеза 8-оксо-2'-дезоксиаденозин-5'-трифосфата и изучено его включение в ДНК разными ДНК-полимеразами. Результаты. Фрагмент Кленова ДНК-полимеразы I с невысокой эффективностью включал oA напротив гуанина. Для ДНК-полимеразы наблюдалось ограниченное включение oA напротив гуанина и аденина, а для ДНК-полимеразы b – напротив аденина, тимина и гуанина. Выводы. Как источник oA в геноме окисление аденина в ДНК может иметь большее значение, чем окисление dATP.
Kлючевые слова: мутагенез, повреждение ДНК, оксидативный стресс, 8-оксоаденин, ДНК полимеразы.
Мета. 8-оксоаденін – розповсюджена пошкоджена основа, асо- ційована з онкологічними і нейродегенеративними захворюваннями. Воно може виникати внаслідок безпосереднього окиснення аденіну в ДНК або при вбудовуванні окисненого dNTP. Методи. Розроблено ефективний спосіб синтезу 8-оксо-2'-дезоксиаденозин-5'-трифосфату і вивчено його включення в ДНК різними ДНК- полімеразами. Результати. Фрагмент Кленова ДНК-полі- мерази I з невисокою ефективністю включав oA навпроти гуаніну. Для ДНК-полімерази спостерігалося обмежене включення oA навпроти гуаніну і аденіну, а для ДНК-полімерази b – навпроти аденіну, тиміну і гуаніну. Висновки. Як джерело oA в геномі окиснення аденіну в ДНК може мати більше значення, ніж окиснення dATP.
Ключові слова: мутагенез, пошкодження ДНК, оксидативний стрес, 8-оксоаденін, ДНК-полімерази.
Aim. 8-Oxoadenine is an abundant DNA lesion associated with cancer and neurodegeneration. It may appear through direct oxidation of adenine in DNA or by incorporation from the oxidized dNTP pool. Methods. We developed an efficient method of synthesizing 8-oxo-2'-deoxyadenosine-5'-triphosphate and studied its incorporation by various DNA polymerases. Results. oA was weakly misincorporated opposite guanine by the DNA polymerase I Klenow fragment. Limited incorporation of oA was observed opposite guanine and adenine with DNA polymerase a, and opposite adenine, thymine and guanine with DNA polymerase b. Conclusions. Adenine oxidation in DNA may outweigh damage to dATP as a source of genomic oA.
Keywords: mutagenesis, DNA damage, oxidative stress, 8-oxoadenine, DNA polymerases.
|
| issn |
0233-7657 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/156932 |
| citation_txt |
Human and bacterial DNA polymerases discriminate against 8-oxo-2'-deoxyadenosine- 5'-triphosphate / I.R. Grin, S.V. Vasilyeva, A.P. Dovgerd, V.N. Silnikov, D.O. Zharkov // Вiopolymers and Cell. — 2012. — Т. 28, № 4. — С. 306-309. — Бібліогр.: 13 назв. — англ. |
| work_keys_str_mv |
AT grinir humanandbacterialdnapolymerasesdiscriminateagainst8oxo2deoxyadenosine5triphosphate AT vasilyevasv humanandbacterialdnapolymerasesdiscriminateagainst8oxo2deoxyadenosine5triphosphate AT dovgerdap humanandbacterialdnapolymerasesdiscriminateagainst8oxo2deoxyadenosine5triphosphate AT silnikovvn humanandbacterialdnapolymerasesdiscriminateagainst8oxo2deoxyadenosine5triphosphate AT zharkovdo humanandbacterialdnapolymerasesdiscriminateagainst8oxo2deoxyadenosine5triphosphate AT grinir diskrimínacíâ8okso2dezoksiadenozin5trifosfatudnkpolímerazamibakteríiílûdini AT vasilyevasv diskrimínacíâ8okso2dezoksiadenozin5trifosfatudnkpolímerazamibakteríiílûdini AT dovgerdap diskrimínacíâ8okso2dezoksiadenozin5trifosfatudnkpolímerazamibakteríiílûdini AT silnikovvn diskrimínacíâ8okso2dezoksiadenozin5trifosfatudnkpolímerazamibakteríiílûdini AT zharkovdo diskrimínacíâ8okso2dezoksiadenozin5trifosfatudnkpolímerazamibakteríiílûdini AT grinir diskriminaciâ8okso2dezoksiadenozin5trifosfatadnkpolimerazamibakteriiičeloveka AT vasilyevasv diskriminaciâ8okso2dezoksiadenozin5trifosfatadnkpolimerazamibakteriiičeloveka AT dovgerdap diskriminaciâ8okso2dezoksiadenozin5trifosfatadnkpolimerazamibakteriiičeloveka AT silnikovvn diskriminaciâ8okso2dezoksiadenozin5trifosfatadnkpolimerazamibakteriiičeloveka AT zharkovdo diskriminaciâ8okso2dezoksiadenozin5trifosfatadnkpolimerazamibakteriiičeloveka |
| first_indexed |
2025-11-25T19:05:24Z |
| last_indexed |
2025-11-25T19:05:24Z |
| _version_ |
1850521833168699392 |
| fulltext |
306
SHORT COMMUNICATIONS
UDC 577.213.38
Human and bacterial DNA polymerases
discriminate against 8-oxo-2'-deoxyadenosine-
5'-triphosphate
I. R. Grin, S. V. Vasilyeva, A. P. Dovgerd, V. N. Silnikov, D. O. Zharkov
Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences
8, Akademika Lavrentieva Ave., Novosibirsk, Russian Federation, 630090
dzharkov@niboch.nsc.ru
Aim. 8-Oxoadenine is an abundant DNA lesion associated with cancer and neurodegeneration. It may appear
through direct oxidation of adenine in DNA or by incorporation from the oxidized dNTP pool. Methods. We de-
veloped an efficient method of synthesizing 8-oxo-2'-deoxyadenosine-5'-triphosphate and studied its incorpora-
tion by various DNA polymerases. Results. oA was weakly misincorporated opposite guanine by the DNA poly-
merase I Klenow fragment. Limited incorporation of oA was observed opposite guanine and adenine with DNA
polymerase a, and opposite adenine, thymine and guanine with DNA polymerase b. Conclusions. Adenine
oxidation in DNA may outweigh damage to dATP as a source of genomic oA.
Keywords: mutagenesis, DNA damage, oxidative stress, 8-oxoadenine, DNA polymerases.
Introduction. 8-Oxoadenine (oA) is a major product of
adenine damage by ionizing radiation and metabolically
generated free radicals [1]. The levels of oA in DNA are
similar to those of other ubiquitous lesion, 8-oxoguanine
[2], and increase in tumors [3]. When present in DNA,
oA is weakly mutagenic [4]. Intriguingly, human cells
possess two enzymes, OGG1 and NEIL1, that remove
oA from oA:C pairs but not from oA:T [5].
oA can appear in DNA in two ways. A in DNA may
be directly oxidized, producing oA:T pairs. Alterna-
tively, A in dATP may be damaged, and the resulting
odATP could be used by DNA polymerases to incorpo-
rate oA opposite T or another base. Human cells express
specific odATPases [6], underscoring the importance
of this damaged dNTP. Whereas a wealth of data exists
for 8-oxoguanine and its dNTP [7], little is known about
the utilization of odATP by DNA polymerases. It has
been reported that, with T in the template, odATP is
~800-fold less efficient than dATP as a substrate for
the exonuclease-deficient Klenow fragment (KF exo–)
[8]. We describe an efficient synthesis of odATP and an
analysis of its use by DNA polymerases.
Materials and methods. Synthesis of odATP. 8-
oxo-2'-deoxyadenosine (Fig. 1, 2) was synthesized from
8-bromo-2'-deoxyadenosine 1 («ChemGenes», USA) by
treatment with 3 M equiv. of 2-mercaptoethanol and 10 M
equiv. of triethylamine in water [9]. The product (90 %
yield) was purified by chromatography on a C18 silica gel
column in water-acetonitrile. Compound 2 was identifi-
ed by comparison of 1H NMR and MS spectra with the
literature data [9]. 5'-Triphosphate of 2 was synthesi-
zed by the Ludwig method [10] with modifications. The
solution of 2 (100 mg, 0.374 mmol) in anhydrous tri-
methyl phosphate and tributylamine (267 µl, 1.122 mmol)
was chilled on ice, and freshly distilled phosphorous oxy-
chloride (77 µl, 0.823 mmol) was added. The mixture was
stirred for 20 min and mixed into 0.5 M bis(tetra-n-bu-
tylammonium) pyrophosphate in acetonitrile (2.24 ml,
1.122 mmol) and tributylamine (0.267 ml, 1 mmol)
with vigorous stirring. After stirring for 30 min at room
temperature, 30 ml of 1 M triethylammonium bicarbo-
nate (pH 7.5) was added. After 2 h, the reaction mixture
ISSN 0233–7657. Biopolymers and Cell. 2012. Vol. 28. N 4. P. 306–309
Ó Institute of Molecular Biology and Genetics, NAS of Ukraine, 2012
307
8-OXOADENINE INCORPORATION BY DNA POLYMERASES
was dried. The product 3 was purified by anion exchan-
ge chromatography on a Polysil SA 15 mm column using
a linear NaCl gradient (0 ® 1 M) in 0.1 % aqueous
CH3COOH, and then on DEAE-Sephadex A-25 (40–
120 mm) using a linear NH4HCO3 gradient (0 ® 1 M) in
water. Appropriate fractions were pooled and dried
several times with aqueous ethanol. Li-odATP was pre-
cipitated by 10 vol. 6 % LiClO4 in acetone.
Characterization of the product: 1H NMR (D2O), d
(ppm): 8.06 (s, 1H, H2); 6.39 (app. t, 1 H, H1', J 7);
4.22–4.06 (m, 2 H, H3', 4'); 3.50–3.42 (m, 2 H, H5');
3.20–2.24 (m, 2 H, H2'); 31P NMR (D2O), d (ppm):
–21.79 (m, 1 P, Pb ); –10.40 (m, 1 P, Pa ); –8.98 (m, 1 P,
Pg). LC/MSD XCT Ion Trap («Agilent Technologies»,
USA), [M + H]+: expected m/z 532.5 (4-Li+), found m/z
532.03.
Oligonucleotides and enzymes. Oligonucleotides
(Figs 2 and 3) were made by «Biosan» (Russia) and
purified by electrophoresis in 20 % polyacrylamide gel
(PAGE) with 8 M urea. The primers were labeled using
[g-32P]ATP and T4 polynucleotide kinase («Biosan»).
KF exo– was from «New England Biolabs» (USA);
mouse embryonic fibroblast extracts, calf thymus DNA
polymerase a and recombinant human DNA polymera-
ses b and l were a gift from Dr. Olga Lavrik (ICBFM).
DNA polymerase reactions. The reaction mixtures
(20 ml) included 100 nM primer–template, 0.5 mM dNTP
and: 50 mM Tris-HCl, pH 7.5, 5 mM MgCl2, 30 mM
KCl, 0.1 mM DTT, 0.25 mg/ml BSA, and 2.5 U of KF
exo–; or 50 mM Tris-HCl, pH 7.5, 5 mM MgCl2, 1 mM
DTT, and 0.5 mM Pol a; or 50 mM Tris-HCl, pH 8.0,
25 mM KCl, 10 mM MgCl2, 1 mM DTT, and 0.5 mM
Pol b; or 50 mM Tris-HCl, pH 8.0, 0.5 mM MnCl2,
0.5 mM DTT, and 0.5 mM Pol l; or 50 mM Tris-HCl,
pH 8.0, 10 mM MgCl2, 1 mM DTT, and 20 mg of cell
extract. After 2–30 min at 25 °C the products were re-
solved by PAGE and visualized by phosphorimaging
(Molecular Imager FX, «Bio-Rad», USA).
Results and discussion. The yield of odATP was
33 mg (45 % of the starting material). odATP was used
for primer extension by KF exo– in a binary primer-
template system (Fig. 2, A). As shown in Fig. 2, B, little
if any incorporation was observed opposite T, whereas
the primer was quickly extended when dATP was pre-
sent. This observation confirms the previous report of
poor substrate properties of odATP for KF exo– [8]. No
incorporation of oA occurred opposite A or C. How-
ever, with G in the template, the primer was elongated
by one and two nucleotides after 30 min. Incorporation
of two oA residues is consistent with the presence of ano-
O
N
N
H
N
N
O
NH2
OH
OH
N
N
N
N
Br
NH2
OOH
OH
O
N
N
H
N
N
O
NH2
OP
O
O
OP
O
O
OP
O
O
OH
OH
i ii, iii
1 2 3
Fig. 1. Scheme of odATP
synthesis: i – 2-mercapto-
ethanol, TEA, H
2
O; ii –
POCl
3
, n-Bu
3
N, (MeO)
3
PO;
iii – (Bu
4
N)
2
H
2
P
2
O
7
Template
dNTP
Time, min
T
oA
2
T
oA
5
T
oA
30
C
oA
2
C
oA
5
C
oA
30
G
oA
2
G
oA
5
G
oA
30
A
oA
2
A
oA
5
A
oA
30
T
A
2
T
A
5
T
A
30
G
–
30
5’-CTCTCCCTTC
3’-GAGAGGGAAGNGAGGAAAGGAGA-5’
A
B
Template
dNTP
Polymerase
C
A
a
C
oA
a
T
A
a
T
oA
a
C
A
b
C
oA
b
T
A
b
T
oA
b
C
A
l
C
oA
l
T
A
l
T
oA
l
C
–
–
T
–
–
C
Fig. 2. Structure of the primer-
template substrate (A); primer
extension with dATP or odATP by
KF exo– (B); primer extension with
dATP or odATP (15-min reaction)
by DNA polymerases a, b or l (C)
308
GRIN I. R. ET AL.
ther G in the + 2 position (Fig. 2, A). The oA(syn):
:G(anti) Hoogsteen pair is stable [11], permitting oA
incorporation opposite G.
KF is a member of DNA polymerase Family A, whe-
reas most human DNA polymerases belong to other fa-
milies. To assess the mutagenic potential of odATP in
human cells, we performed the reaction using the high-
fidelity Pol a (Family B), and two Family X enzymes,
Pol b and Pol l , normally participating in DNA repair
[12]. With the binary primer–template, all three enzy-
mes efficiently incorporated A opposite T (Fig. 2, C).
However, only Pol b incorporated oA opposite T to any
extent. We observed no incorporation of oA opposite C
by Pol a , Pol b , or Pol l . Interestingly, taken in a large
excess, Pol b and Pol l incorporated A opposite C, con-
sistent with their lower fidelity in comparison with Pol
a [12].
Binary primer-template is suboptimal for Pol b and
Pol l, which prefer substrates with a short gap [13].
Therefore, we studied the behavior of Pol a , Pol b , and
Pol l when presented with odATP and a gapped subst-
rate consisting of a template, a primer, and a down-
stream strand (Fig. 3, A). All polymerases efficiently in-
corporated A opposite T (Fig. 3, B–D). Pol a misin-
corporated A opposite A and, less efficiently, opposite
C. In contrast, no incorporation of oA opposite C or T
was observed. When A or G were in the template, oA
was weakly incorporated with some extension to the +2
position, similar to that observed with KF and the bina-
ry primer–template. Pol b misincorporated A opposite
A, C, and G, whereas oA was incorporated much wor-
se, with the order of the template preference T > G > A.
Pol l catalyzed only normal incorporation of A oppo-
site T, did not form mismatches with A and did not in-
corporate oA.
Finally, we inquired whether odATP is used by
DNA polymerases present in mammalian cell extracts.
Whole-cell mouse embryonic fibroblast extracts effici-
ently incorporated A opposite T (Fig. 4). However, no
incorporation of oA was evident. It is still possible that
such incorporation is not observed due to the primer de-
gradation by nucleases.
It is instructive to compare the situation when oA is
present in dNTP and in DNA. KF bypasses template oA
Template
dNTP
Extract
Time, min
T
–
–
30
C
–
–
30
T
A
+
2
T
A
+
5
T
A
+
30
T
oA
+
2
T
oA
+
5
T
oA
+
30
C
A
+
2
C
A
+
5
C
A
+
30
C
oA
+
2
C
oA
+
5
C
oA
+
30
Fig. 4. Extension of the primer-temp-
late substrate by mouse embryonic
fibroblast extracts
5’-CTCTCCCTTC CTCCTTTCCTCT-3’
3’-GAGAGGGAAGNGAGGAAAGGAGA-5’
A
B
C
D
1 2 3 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10
Template
dNTP
Polymerase
C
–
l
A
oA
l
A
A
l
C
oA
l
C
A
l
G
oA
l
G
A
l
T
oA
l
T
A
l
C
oA
–
Template
dNTP
Polymerase
C
–
b
A
oA
b
A
A
b
C
oA
b
C
A
b
G
oA
b
G
A
b
T
oA
b
T
A
b
C
oA
–
Template
dNTP
Polymerase
C
–
a
A
oA
a
A
A
a
C
oA
a
C
A
a
G
oA
a
G
A
a
T
oA
a
T
A
a
C
oA
–
Fig. 3. Structure of the gapped substrate (A); primer extension with
dATP or odATP (15-min reaction) by DNA polymerases a (B), b (C),
or l (D)
in an error-free manner when all four dNTPs are avai-
lable [4]. On the contrary, when this lesion is present as
odATP, it is poorly incorporated by KF and tends to be
misincorporated opposite G. Small amounts of G or A
are incorporated opposite oA by KF, Pol a and Pol b
when only dGTP or dATP is present [4]. In our experi-
ments, a small degree of misincorporation of oA by Pol
a and Pol b is also observed opposite A and G, sugges-
ting that the acceptance of oA may require Hoogsteen-
type pairing.
Conclusions. Our data hint that oxidative damage
of the dATP pool and incorporation of oA may be less
important than direct oxidation of A in DNA as a sour-
ce of genomic oA. However, this does not mean that
odATP has no effect in vivo. The proposed synthetic
pathway to oxodATP will permit a more detailed inves-
tigation of its properties.
Acknowledgements. This work was supported by
RAS Presidium (Molecular and Cellular Biology, N 6.14),
SB RAS (N 88), RFBR (11-04-00807-a), and President’s
Grant MK-2703.2011.4 to I. G.
². Ð. Ãð³í, Ñ. Â. Âà ñèëüºâà, À. Ï. Äîâ ãåðä, Â. Í. Ñèëüí³êîâ,
Ä. Î. Æàð êîâ
Äèñ êðèì³íàö³ÿ 8-îêñî-2'-äåç îêñè à äå íî çèí-5'-òðè ôîñ ôà òó
ÄÍÊ-ïîë³ìå ðà çà ìè áàê òåð³é ³ ëþäèíè
Ðå çþ ìå
Ìåòà. 8-îêñî à äåí³í – ðîç ïîâ ñþä æå íà ïî øêîä æå íà îñíî âà, àñî-
ö³éî âà íà ç îíêî ëîã³÷íè ìè ³ íå é ðî äå ãå íå ðà òèâ íè ìè çà õâî ðþ âàí íÿ -
ìè. Âîíî ìîæå âè íè êà òè âíàñë³äîê áåç ïî ñå ðåä íüî ãî îêèñ íåí íÿ
àäåí³íó â ÄÍÊ àáî ïðè âáó äî âó âàíí³ îêèñ íå íî ãî dNTP. Ìå òî äè.
Ðîç ðîá ëå íî åôåê òèâ íèé ñïîñ³á ñèí òå çó 8-îêñî-2'-äåç îêñè à äå -
íîçèí-5'-òðè ôîñ ôà òó ³ âèâ ÷å íî éîãî âêëþ ÷åí íÿ â ÄÍÊ ð³çíè ìè
ÄÍÊ- ïîë³ìå ðà çà ìè. Ðå çóëü òà òè. Ôðàã ìåíò Êëå íî âà ÄÍÊ-ïîë³-
ìå ðà çè I ç íå âè ñî êîþ åôåê òèâí³ñòþ âêëþ ÷àâ oA íà âïðî òè ãóà-
í³íó. Äëÿ ÄÍÊ-ïîë³ìå ðà çè a ñïîñ òåð³ãà ëî ñÿ îá ìå æå íå âêëþ ÷åí íÿ
oA íà âïðî òè ãóàí³íó ³ àäåí³íó, à äëÿ ÄÍÊ-ïîë³ìå ðà çè b – íà âïðî -
òè àäåí³íó, òèì³íó ³ ãóàí³íó. Âèñ íîâ êè. ßê äæå ðå ëî oA â ãå íîì³
îêèñ íåí íÿ àäåí³íó â ÄÍÊ ìîæå ìàòè á³ëüøå çíà ÷åí íÿ, í³æ îêèñ -
íåí íÿ dATP.
Êëþ ÷îâ³ ñëî âà: ìó òà ãå íåç, ïî øêîä æåí íÿ ÄÍÊ, îêñè äà òèâ íèé
ñòðåñ, 8-îêñî à äåí³í, ÄÍÊ-ïîë³ìå ðà çè.
È. Ð. Ãðèí, Ñ. Â, Âà ñèëü å âà, À. Ï. Äîâ ãåðä, Â. Í. Ñèëü íè êîâ,
Ä. Î. Æàð êîâ
Äèñ êðè ìè íà öèÿ 8-îêñî-2'-äåç îêñè à äå íî çèí-5'-òðè ôîñ ôà òà
ÄÍÊ-ïî ëè ìå ðà çà ìè áàê òå ðèé è ÷åëîâåêà
Ðå çþ ìå
Öåëü. 8-îêñî à äå íèí – ðàñ ïðîñ òðà íåí íîå ïî âðåæ äåí íîå îñíî âà -
íèå, àñ ñî öè è ðî âàí íîå ñ îíêî ëî ãè ÷åñ êè ìè è íå é ðî äå ãå íå ðà òèâ íû -
ìè çà áî ëå âà íè ÿ ìè. Îíî ìî æåò âîç íè êàòü âñëå äñòâèå íå ïîñ ðåä-
ñòâåí íî ãî îêèñ ëå íèÿ àäå íè íà â ÄÍÊ èëè ïðè âêëþ ÷å íèè îêèñ ëåí -
íî ãî dNTP. Ìå òî äû. Ðàç ðà áî òàí ýô ôåê òèâ íûé ñïî ñîá ñèí òå çà
8-îêñî-2'-äåç îêñè à äå íî çèí-5'-òðè ôîñ ôà òà è èç ó÷å íî åãî âêëþ ÷å -
íèå â ÄÍÊ ðàç íû ìè ÄÍÊ-ïî ëè ìå ðà çà ìè. Ðå çóëü òà òû. Ôðàã ìåíò
Êëå íî âà ÄÍÊ-ïî ëè ìå ðà çû I ñ íå âû ñî êîé ýô ôåê òèâ íîñ òüþ âêëþ -
÷àë oA íà ïðî òèâ ãó à íè íà. Äëÿ ÄÍÊ-ïî ëè ìå ðà çû a íà áëþ äà ëîñü
îãðà íè ÷åí íîå âêëþ ÷å íèå oA íà ïðî òèâ ãó à íè íà è àäå íè íà, à äëÿ
ÄÍÊ-ïî ëè ìå ðà çû b – íà ïðî òèâ àäå íè íà, òè ìè íà è ãó à íè íà. Âû âî -
äû. Êàê èñ òî÷ íèê oA â ãå íî ìå îêèñ ëå íèå àäå íè íà â ÄÍÊ ìî æåò
èìåòü áîëü øåå çíà ÷å íèå, ÷åì îêèñ ëå íèå dATP.
Êëþ ÷å âûå ñëî âà: ìó òà ãå íåç, ïî âðåæ äå íèå ÄÍÊ, îêñè äà òèâ -
íûé ñòðåññ, 8-îêñî à äå íèí, ÄÍÊ ïî ëè ìå ðà çû.
REFERENCES
1. Von Sonntag C. Free-radical-induced DNA damage and its re-
pair: A chemical perspective.–Heidelberg: Springer, 2006.–
523 p.
2. Gajewski E., Rao G., Nackerdien Z., Dizdaroglu M. Modification
of DNA bases in mammalian chromatin by radiation-generated
free radicals // Biochemistry.–1990.–29, N 34.–P. 7876–7882.
3. Jaruga P., Zastawny T. H., Skokowski J., Dizdaroglu M., Olinski
R. Oxidative DNA base damage and antioxidant enzyme activiti-
es in human lung cancer // FEBS Lett.–1994.–341, N 1.–P. 59–64.
4. Shibutani S., Bodepudi V., Johnson F., Grollman A. P. Transle-
sional synthesis on DNA templates containing 8-oxo-7,8-dihydro-
deoxyadenosine // Biochemistry.–1993.–32, N 17.–P. 4615–4621.
5. Grin I. R., Dianov G. L., Zharkov D. O. The role of mammalian
NEIL1 protein in the repair of 8-oxo-7,8-dihydroadenine in
DNA // FEBS Lett.–2010.–584, N 8.–P. 1553–1557.
6. Fujikawa K., Kamiya H., Yakushiji H., Fujii Y., Nakabeppu Y.,
Kasai H. The oxidized forms of dATP are substrates for the hu-
man MutT homologue, the hMTH1 protein // J. Biol. Chem.–
1999.–274, N 26.–P. 18201–18205.
7. Nakabeppu Y., Sakumi K., Sakamoto K., Tsuchimoto D., Tsuzuki
T., Nakatsu Y. Mutagenesis and carcinogenesis caused by the oxi-
dation of nucleic acids // Biol. Chem.–2006.–387, N 4.– P. 373–
379.
8. Purmal A. A., Kow Y. W., Wallace S. S. 5-Hydroxypyrimidine
deoxynucleoside triphosphates are more efficiently incorpora-
ted into DNA by exonuclease-free Klenow fragment than 8-
oxopurine deoxynucleoside triphosphates // Nucleic Acids Res.–
1994.–22, N 19.–P. 3930–3935.
9. Chatgilialoglu C., Navacchia M. L., Postigo A. A facile one-pot
synthesis of 8-oxo-7,8-dihydro-(2'-deoxy)adenosine in water //
Tetrahedron Lett.–2006.–47, N 5.–P. 711–714.
10. Ludwig J. A new route to nucleoside 5'-triphosphates // Acta Bio-
chim. Biophys. Acad. Sci. Hung.–1981.–16, N 3–4.–P. 131–133.
11. Leonard G. A., Guy A., Brown T., Teoule R., Hunter W. N. Con-
formation of guanine-8-oxoadenine base pairs in the crystal struc-
ture of d(CGCGAATT(O8A)GCG) // Biochemistry.–1992.– 31,
N 36.–P. 8415–8420.
12. Showalter A. K., Lamarche B. J., Bakhtina M., Su M. I., Tang K.
H., Tsai M. D. Mechanistic comparison of high-fidelity and error-
prone DNA polymerases and ligases involved in DNA repair //
Chem. Rev.–2006.–106, N 2.–P. 340–360.
13. Beard W. A., Wilson S. H. Structure and mechanism of DNA po-
lymerase beta // Chem. Rev.–2006.–106, N 2.–P. 361–382.
Received 10.01.12
309
8-OXOADENINE INCORPORATION BY DNA POLYMERASES
|