Human and bacterial DNA polymerases discriminate against 8-oxo-2'-deoxyadenosine- 5'-triphosphate

Цель. 8-оксоаденин – распространенное поврежденное основание, ассоциированное с онкологическими и нейродегенеративными заболеваниями. Оно может возникать вследствие непосредственного окисления аденина в ДНК или при включении окисленного dNTP. Методы. Разработан эффективный способ синтеза 8-оксо-2�...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Вiopolymers and Cell
Datum:2012
Hauptverfasser: Grin, I.R., Vasilyeva, S.V., Dovgerd, A.P., Silnikov, V.N., Zharkov, D.O.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут молекулярної біології і генетики НАН України 2012
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/156932
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Human and bacterial DNA polymerases discriminate against 8-oxo-2'-deoxyadenosine- 5'-triphosphate / I.R. Grin, S.V. Vasilyeva, A.P. Dovgerd, V.N. Silnikov, D.O. Zharkov // Вiopolymers and Cell. — 2012. — Т. 28, № 4. — С. 306-309. — Бібліогр.: 13 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-156932
record_format dspace
spelling Grin, I.R.
Vasilyeva, S.V.
Dovgerd, A.P.
Silnikov, V.N.
Zharkov, D.O.
2019-06-19T10:58:49Z
2019-06-19T10:58:49Z
2012
Human and bacterial DNA polymerases discriminate against 8-oxo-2'-deoxyadenosine- 5'-triphosphate / I.R. Grin, S.V. Vasilyeva, A.P. Dovgerd, V.N. Silnikov, D.O. Zharkov // Вiopolymers and Cell. — 2012. — Т. 28, № 4. — С. 306-309. — Бібліогр.: 13 назв. — англ.
0233-7657
https://nasplib.isofts.kiev.ua/handle/123456789/156932
577.213.38
Цель. 8-оксоаденин – распространенное поврежденное основание, ассоциированное с онкологическими и нейродегенеративными заболеваниями. Оно может возникать вследствие непосредственного окисления аденина в ДНК или при включении окисленного dNTP. Методы. Разработан эффективный способ синтеза 8-оксо-2'-дезоксиаденозин-5'-трифосфата и изучено его включение в ДНК разными ДНК-полимеразами. Результаты. Фрагмент Кленова ДНК-полимеразы I с невысокой эффективностью включал oA напротив гуанина. Для ДНК-полимеразы наблюдалось ограниченное включение oA напротив гуанина и аденина, а для ДНК-полимеразы b – напротив аденина, тимина и гуанина. Выводы. Как источник oA в геноме окисление аденина в ДНК может иметь большее значение, чем окисление dATP. Kлючевые слова: мутагенез, повреждение ДНК, оксидативный стресс, 8-оксоаденин, ДНК полимеразы.
Мета. 8-оксоаденін – розповсюджена пошкоджена основа, асо- ційована з онкологічними і нейродегенеративними захворюваннями. Воно може виникати внаслідок безпосереднього окиснення аденіну в ДНК або при вбудовуванні окисненого dNTP. Методи. Розроблено ефективний спосіб синтезу 8-оксо-2'-дезоксиаденозин-5'-трифосфату і вивчено його включення в ДНК різними ДНК- полімеразами. Результати. Фрагмент Кленова ДНК-полі- мерази I з невисокою ефективністю включав oA навпроти гуаніну. Для ДНК-полімерази спостерігалося обмежене включення oA навпроти гуаніну і аденіну, а для ДНК-полімерази b – навпроти аденіну, тиміну і гуаніну. Висновки. Як джерело oA в геномі окиснення аденіну в ДНК може мати більше значення, ніж окиснення dATP. Ключові слова: мутагенез, пошкодження ДНК, оксидативний стрес, 8-оксоаденін, ДНК-полімерази.
Aim. 8-Oxoadenine is an abundant DNA lesion associated with cancer and neurodegeneration. It may appear through direct oxidation of adenine in DNA or by incorporation from the oxidized dNTP pool. Methods. We developed an efficient method of synthesizing 8-oxo-2'-deoxyadenosine-5'-triphosphate and studied its incorporation by various DNA polymerases. Results. oA was weakly misincorporated opposite guanine by the DNA polymerase I Klenow fragment. Limited incorporation of oA was observed opposite guanine and adenine with DNA polymerase a, and opposite adenine, thymine and guanine with DNA polymerase b. Conclusions. Adenine oxidation in DNA may outweigh damage to dATP as a source of genomic oA. Keywords: mutagenesis, DNA damage, oxidative stress, 8-oxoadenine, DNA polymerases.
en
Інститут молекулярної біології і генетики НАН України
Вiopolymers and Cell
Short Communications
Human and bacterial DNA polymerases discriminate against 8-oxo-2'-deoxyadenosine- 5'-triphosphate
Дискримінація 8-оксо-2'-дезоксиаденозин-5'-трифосфату ДНК-полімеразами бактерій і людини
Дискриминация 8-оксо-2'-дезоксиаденозин-5'-трифосфата ДНК-полимеразами бактерий и человека
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Human and bacterial DNA polymerases discriminate against 8-oxo-2'-deoxyadenosine- 5'-triphosphate
spellingShingle Human and bacterial DNA polymerases discriminate against 8-oxo-2'-deoxyadenosine- 5'-triphosphate
Grin, I.R.
Vasilyeva, S.V.
Dovgerd, A.P.
Silnikov, V.N.
Zharkov, D.O.
Short Communications
title_short Human and bacterial DNA polymerases discriminate against 8-oxo-2'-deoxyadenosine- 5'-triphosphate
title_full Human and bacterial DNA polymerases discriminate against 8-oxo-2'-deoxyadenosine- 5'-triphosphate
title_fullStr Human and bacterial DNA polymerases discriminate against 8-oxo-2'-deoxyadenosine- 5'-triphosphate
title_full_unstemmed Human and bacterial DNA polymerases discriminate against 8-oxo-2'-deoxyadenosine- 5'-triphosphate
title_sort human and bacterial dna polymerases discriminate against 8-oxo-2'-deoxyadenosine- 5'-triphosphate
author Grin, I.R.
Vasilyeva, S.V.
Dovgerd, A.P.
Silnikov, V.N.
Zharkov, D.O.
author_facet Grin, I.R.
Vasilyeva, S.V.
Dovgerd, A.P.
Silnikov, V.N.
Zharkov, D.O.
topic Short Communications
topic_facet Short Communications
publishDate 2012
language English
container_title Вiopolymers and Cell
publisher Інститут молекулярної біології і генетики НАН України
format Article
title_alt Дискримінація 8-оксо-2'-дезоксиаденозин-5'-трифосфату ДНК-полімеразами бактерій і людини
Дискриминация 8-оксо-2'-дезоксиаденозин-5'-трифосфата ДНК-полимеразами бактерий и человека
description Цель. 8-оксоаденин – распространенное поврежденное основание, ассоциированное с онкологическими и нейродегенеративными заболеваниями. Оно может возникать вследствие непосредственного окисления аденина в ДНК или при включении окисленного dNTP. Методы. Разработан эффективный способ синтеза 8-оксо-2'-дезоксиаденозин-5'-трифосфата и изучено его включение в ДНК разными ДНК-полимеразами. Результаты. Фрагмент Кленова ДНК-полимеразы I с невысокой эффективностью включал oA напротив гуанина. Для ДНК-полимеразы наблюдалось ограниченное включение oA напротив гуанина и аденина, а для ДНК-полимеразы b – напротив аденина, тимина и гуанина. Выводы. Как источник oA в геноме окисление аденина в ДНК может иметь большее значение, чем окисление dATP. Kлючевые слова: мутагенез, повреждение ДНК, оксидативный стресс, 8-оксоаденин, ДНК полимеразы. Мета. 8-оксоаденін – розповсюджена пошкоджена основа, асо- ційована з онкологічними і нейродегенеративними захворюваннями. Воно може виникати внаслідок безпосереднього окиснення аденіну в ДНК або при вбудовуванні окисненого dNTP. Методи. Розроблено ефективний спосіб синтезу 8-оксо-2'-дезоксиаденозин-5'-трифосфату і вивчено його включення в ДНК різними ДНК- полімеразами. Результати. Фрагмент Кленова ДНК-полі- мерази I з невисокою ефективністю включав oA навпроти гуаніну. Для ДНК-полімерази спостерігалося обмежене включення oA навпроти гуаніну і аденіну, а для ДНК-полімерази b – навпроти аденіну, тиміну і гуаніну. Висновки. Як джерело oA в геномі окиснення аденіну в ДНК може мати більше значення, ніж окиснення dATP. Ключові слова: мутагенез, пошкодження ДНК, оксидативний стрес, 8-оксоаденін, ДНК-полімерази. Aim. 8-Oxoadenine is an abundant DNA lesion associated with cancer and neurodegeneration. It may appear through direct oxidation of adenine in DNA or by incorporation from the oxidized dNTP pool. Methods. We developed an efficient method of synthesizing 8-oxo-2'-deoxyadenosine-5'-triphosphate and studied its incorporation by various DNA polymerases. Results. oA was weakly misincorporated opposite guanine by the DNA polymerase I Klenow fragment. Limited incorporation of oA was observed opposite guanine and adenine with DNA polymerase a, and opposite adenine, thymine and guanine with DNA polymerase b. Conclusions. Adenine oxidation in DNA may outweigh damage to dATP as a source of genomic oA. Keywords: mutagenesis, DNA damage, oxidative stress, 8-oxoadenine, DNA polymerases.
issn 0233-7657
url https://nasplib.isofts.kiev.ua/handle/123456789/156932
citation_txt Human and bacterial DNA polymerases discriminate against 8-oxo-2'-deoxyadenosine- 5'-triphosphate / I.R. Grin, S.V. Vasilyeva, A.P. Dovgerd, V.N. Silnikov, D.O. Zharkov // Вiopolymers and Cell. — 2012. — Т. 28, № 4. — С. 306-309. — Бібліогр.: 13 назв. — англ.
work_keys_str_mv AT grinir humanandbacterialdnapolymerasesdiscriminateagainst8oxo2deoxyadenosine5triphosphate
AT vasilyevasv humanandbacterialdnapolymerasesdiscriminateagainst8oxo2deoxyadenosine5triphosphate
AT dovgerdap humanandbacterialdnapolymerasesdiscriminateagainst8oxo2deoxyadenosine5triphosphate
AT silnikovvn humanandbacterialdnapolymerasesdiscriminateagainst8oxo2deoxyadenosine5triphosphate
AT zharkovdo humanandbacterialdnapolymerasesdiscriminateagainst8oxo2deoxyadenosine5triphosphate
AT grinir diskrimínacíâ8okso2dezoksiadenozin5trifosfatudnkpolímerazamibakteríiílûdini
AT vasilyevasv diskrimínacíâ8okso2dezoksiadenozin5trifosfatudnkpolímerazamibakteríiílûdini
AT dovgerdap diskrimínacíâ8okso2dezoksiadenozin5trifosfatudnkpolímerazamibakteríiílûdini
AT silnikovvn diskrimínacíâ8okso2dezoksiadenozin5trifosfatudnkpolímerazamibakteríiílûdini
AT zharkovdo diskrimínacíâ8okso2dezoksiadenozin5trifosfatudnkpolímerazamibakteríiílûdini
AT grinir diskriminaciâ8okso2dezoksiadenozin5trifosfatadnkpolimerazamibakteriiičeloveka
AT vasilyevasv diskriminaciâ8okso2dezoksiadenozin5trifosfatadnkpolimerazamibakteriiičeloveka
AT dovgerdap diskriminaciâ8okso2dezoksiadenozin5trifosfatadnkpolimerazamibakteriiičeloveka
AT silnikovvn diskriminaciâ8okso2dezoksiadenozin5trifosfatadnkpolimerazamibakteriiičeloveka
AT zharkovdo diskriminaciâ8okso2dezoksiadenozin5trifosfatadnkpolimerazamibakteriiičeloveka
first_indexed 2025-11-25T19:05:24Z
last_indexed 2025-11-25T19:05:24Z
_version_ 1850521833168699392
fulltext 306 SHORT COMMUNICATIONS UDC 577.213.38 Human and bacterial DNA polymerases discriminate against 8-oxo-2'-deoxyadenosine- 5'-triphosphate I. R. Grin, S. V. Vasilyeva, A. P. Dovgerd, V. N. Silnikov, D. O. Zharkov Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences 8, Akademika Lavrentieva Ave., Novosibirsk, Russian Federation, 630090 dzharkov@niboch.nsc.ru Aim. 8-Oxoadenine is an abundant DNA lesion associated with cancer and neurodegeneration. It may appear through direct oxidation of adenine in DNA or by incorporation from the oxidized dNTP pool. Methods. We de- veloped an efficient method of synthesizing 8-oxo-2'-deoxyadenosine-5'-triphosphate and studied its incorpora- tion by various DNA polymerases. Results. oA was weakly misincorporated opposite guanine by the DNA poly- merase I Klenow fragment. Limited incorporation of oA was observed opposite guanine and adenine with DNA polymerase a, and opposite adenine, thymine and guanine with DNA polymerase b. Conclusions. Adenine oxidation in DNA may outweigh damage to dATP as a source of genomic oA. Keywords: mutagenesis, DNA damage, oxidative stress, 8-oxoadenine, DNA polymerases. Introduction. 8-Oxoadenine (oA) is a major product of adenine damage by ionizing radiation and metabolically generated free radicals [1]. The levels of oA in DNA are similar to those of other ubiquitous lesion, 8-oxoguanine [2], and increase in tumors [3]. When present in DNA, oA is weakly mutagenic [4]. Intriguingly, human cells possess two enzymes, OGG1 and NEIL1, that remove oA from oA:C pairs but not from oA:T [5]. oA can appear in DNA in two ways. A in DNA may be directly oxidized, producing oA:T pairs. Alterna- tively, A in dATP may be damaged, and the resulting odATP could be used by DNA polymerases to incorpo- rate oA opposite T or another base. Human cells express specific odATPases [6], underscoring the importance of this damaged dNTP. Whereas a wealth of data exists for 8-oxoguanine and its dNTP [7], little is known about the utilization of odATP by DNA polymerases. It has been reported that, with T in the template, odATP is ~800-fold less efficient than dATP as a substrate for the exonuclease-deficient Klenow fragment (KF exo–) [8]. We describe an efficient synthesis of odATP and an analysis of its use by DNA polymerases. Materials and methods. Synthesis of odATP. 8- oxo-2'-deoxyadenosine (Fig. 1, 2) was synthesized from 8-bromo-2'-deoxyadenosine 1 («ChemGenes», USA) by treatment with 3 M equiv. of 2-mercaptoethanol and 10 M equiv. of triethylamine in water [9]. The product (90 % yield) was purified by chromatography on a C18 silica gel column in water-acetonitrile. Compound 2 was identifi- ed by comparison of 1H NMR and MS spectra with the literature data [9]. 5'-Triphosphate of 2 was synthesi- zed by the Ludwig method [10] with modifications. The solution of 2 (100 mg, 0.374 mmol) in anhydrous tri- methyl phosphate and tributylamine (267 µl, 1.122 mmol) was chilled on ice, and freshly distilled phosphorous oxy- chloride (77 µl, 0.823 mmol) was added. The mixture was stirred for 20 min and mixed into 0.5 M bis(tetra-n-bu- tylammonium) pyrophosphate in acetonitrile (2.24 ml, 1.122 mmol) and tributylamine (0.267 ml, 1 mmol) with vigorous stirring. After stirring for 30 min at room temperature, 30 ml of 1 M triethylammonium bicarbo- nate (pH 7.5) was added. After 2 h, the reaction mixture ISSN 0233–7657. Biopolymers and Cell. 2012. Vol. 28. N 4. P. 306–309 Ó Institute of Molecular Biology and Genetics, NAS of Ukraine, 2012 307 8-OXOADENINE INCORPORATION BY DNA POLYMERASES was dried. The product 3 was purified by anion exchan- ge chromatography on a Polysil SA 15 mm column using a linear NaCl gradient (0 ® 1 M) in 0.1 % aqueous CH3COOH, and then on DEAE-Sephadex A-25 (40– 120 mm) using a linear NH4HCO3 gradient (0 ® 1 M) in water. Appropriate fractions were pooled and dried several times with aqueous ethanol. Li-odATP was pre- cipitated by 10 vol. 6 % LiClO4 in acetone. Characterization of the product: 1H NMR (D2O), d (ppm): 8.06 (s, 1H, H2); 6.39 (app. t, 1 H, H1', J 7); 4.22–4.06 (m, 2 H, H3', 4'); 3.50–3.42 (m, 2 H, H5'); 3.20–2.24 (m, 2 H, H2'); 31P NMR (D2O), d (ppm): –21.79 (m, 1 P, Pb ); –10.40 (m, 1 P, Pa ); –8.98 (m, 1 P, Pg). LC/MSD XCT Ion Trap («Agilent Technologies», USA), [M + H]+: expected m/z 532.5 (4-Li+), found m/z 532.03. Oligonucleotides and enzymes. Oligonucleotides (Figs 2 and 3) were made by «Biosan» (Russia) and purified by electrophoresis in 20 % polyacrylamide gel (PAGE) with 8 M urea. The primers were labeled using [g-32P]ATP and T4 polynucleotide kinase («Biosan»). KF exo– was from «New England Biolabs» (USA); mouse embryonic fibroblast extracts, calf thymus DNA polymerase a and recombinant human DNA polymera- ses b and l were a gift from Dr. Olga Lavrik (ICBFM). DNA polymerase reactions. The reaction mixtures (20 ml) included 100 nM primer–template, 0.5 mM dNTP and: 50 mM Tris-HCl, pH 7.5, 5 mM MgCl2, 30 mM KCl, 0.1 mM DTT, 0.25 mg/ml BSA, and 2.5 U of KF exo–; or 50 mM Tris-HCl, pH 7.5, 5 mM MgCl2, 1 mM DTT, and 0.5 mM Pol a; or 50 mM Tris-HCl, pH 8.0, 25 mM KCl, 10 mM MgCl2, 1 mM DTT, and 0.5 mM Pol b; or 50 mM Tris-HCl, pH 8.0, 0.5 mM MnCl2, 0.5 mM DTT, and 0.5 mM Pol l; or 50 mM Tris-HCl, pH 8.0, 10 mM MgCl2, 1 mM DTT, and 20 mg of cell extract. After 2–30 min at 25 °C the products were re- solved by PAGE and visualized by phosphorimaging (Molecular Imager FX, «Bio-Rad», USA). Results and discussion. The yield of odATP was 33 mg (45 % of the starting material). odATP was used for primer extension by KF exo– in a binary primer- template system (Fig. 2, A). As shown in Fig. 2, B, little if any incorporation was observed opposite T, whereas the primer was quickly extended when dATP was pre- sent. This observation confirms the previous report of poor substrate properties of odATP for KF exo– [8]. No incorporation of oA occurred opposite A or C. How- ever, with G in the template, the primer was elongated by one and two nucleotides after 30 min. Incorporation of two oA residues is consistent with the presence of ano- O N N H N N O NH2 OH OH N N N N Br NH2 OOH OH O N N H N N O NH2 OP O O OP O O OP O O OH OH i ii, iii 1 2 3 Fig. 1. Scheme of odATP synthesis: i – 2-mercapto- ethanol, TEA, H 2 O; ii – POCl 3 , n-Bu 3 N, (MeO) 3 PO; iii – (Bu 4 N) 2 H 2 P 2 O 7 Template dNTP Time, min T oA 2 T oA 5 T oA 30 C oA 2 C oA 5 C oA 30 G oA 2 G oA 5 G oA 30 A oA 2 A oA 5 A oA 30 T A 2 T A 5 T A 30 G – 30 5’-CTCTCCCTTC 3’-GAGAGGGAAGNGAGGAAAGGAGA-5’ A B Template dNTP Polymerase C A a C oA a T A a T oA a C A b C oA b T A b T oA b C A l C oA l T A l T oA l C – – T – – C Fig. 2. Structure of the primer- template substrate (A); primer extension with dATP or odATP by KF exo– (B); primer extension with dATP or odATP (15-min reaction) by DNA polymerases a, b or l (C) 308 GRIN I. R. ET AL. ther G in the + 2 position (Fig. 2, A). The oA(syn): :G(anti) Hoogsteen pair is stable [11], permitting oA incorporation opposite G. KF is a member of DNA polymerase Family A, whe- reas most human DNA polymerases belong to other fa- milies. To assess the mutagenic potential of odATP in human cells, we performed the reaction using the high- fidelity Pol a (Family B), and two Family X enzymes, Pol b and Pol l , normally participating in DNA repair [12]. With the binary primer–template, all three enzy- mes efficiently incorporated A opposite T (Fig. 2, C). However, only Pol b incorporated oA opposite T to any extent. We observed no incorporation of oA opposite C by Pol a , Pol b , or Pol l . Interestingly, taken in a large excess, Pol b and Pol l incorporated A opposite C, con- sistent with their lower fidelity in comparison with Pol a [12]. Binary primer-template is suboptimal for Pol b and Pol l, which prefer substrates with a short gap [13]. Therefore, we studied the behavior of Pol a , Pol b , and Pol l when presented with odATP and a gapped subst- rate consisting of a template, a primer, and a down- stream strand (Fig. 3, A). All polymerases efficiently in- corporated A opposite T (Fig. 3, B–D). Pol a misin- corporated A opposite A and, less efficiently, opposite C. In contrast, no incorporation of oA opposite C or T was observed. When A or G were in the template, oA was weakly incorporated with some extension to the +2 position, similar to that observed with KF and the bina- ry primer–template. Pol b misincorporated A opposite A, C, and G, whereas oA was incorporated much wor- se, with the order of the template preference T > G > A. Pol l catalyzed only normal incorporation of A oppo- site T, did not form mismatches with A and did not in- corporate oA. Finally, we inquired whether odATP is used by DNA polymerases present in mammalian cell extracts. Whole-cell mouse embryonic fibroblast extracts effici- ently incorporated A opposite T (Fig. 4). However, no incorporation of oA was evident. It is still possible that such incorporation is not observed due to the primer de- gradation by nucleases. It is instructive to compare the situation when oA is present in dNTP and in DNA. KF bypasses template oA Template dNTP Extract Time, min T – – 30 C – – 30 T A + 2 T A + 5 T A + 30 T oA + 2 T oA + 5 T oA + 30 C A + 2 C A + 5 C A + 30 C oA + 2 C oA + 5 C oA + 30 Fig. 4. Extension of the primer-temp- late substrate by mouse embryonic fibroblast extracts 5’-CTCTCCCTTC CTCCTTTCCTCT-3’ 3’-GAGAGGGAAGNGAGGAAAGGAGA-5’ A B C D 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 Template dNTP Polymerase C – l A oA l A A l C oA l C A l G oA l G A l T oA l T A l C oA – Template dNTP Polymerase C – b A oA b A A b C oA b C A b G oA b G A b T oA b T A b C oA – Template dNTP Polymerase C – a A oA a A A a C oA a C A a G oA a G A a T oA a T A a C oA – Fig. 3. Structure of the gapped substrate (A); primer extension with dATP or odATP (15-min reaction) by DNA polymerases a (B), b (C), or l (D) in an error-free manner when all four dNTPs are avai- lable [4]. On the contrary, when this lesion is present as odATP, it is poorly incorporated by KF and tends to be misincorporated opposite G. Small amounts of G or A are incorporated opposite oA by KF, Pol a and Pol b when only dGTP or dATP is present [4]. In our experi- ments, a small degree of misincorporation of oA by Pol a and Pol b is also observed opposite A and G, sugges- ting that the acceptance of oA may require Hoogsteen- type pairing. Conclusions. Our data hint that oxidative damage of the dATP pool and incorporation of oA may be less important than direct oxidation of A in DNA as a sour- ce of genomic oA. However, this does not mean that odATP has no effect in vivo. The proposed synthetic pathway to oxodATP will permit a more detailed inves- tigation of its properties. Acknowledgements. This work was supported by RAS Presidium (Molecular and Cellular Biology, N 6.14), SB RAS (N 88), RFBR (11-04-00807-a), and President’s Grant MK-2703.2011.4 to I. G. ². Ð. Ãð³í, Ñ. Â. Âà ñèëüºâà, À. Ï. Äîâ ãåðä, Â. Í. Ñèëüí³êîâ, Ä. Î. Æàð êîâ Äèñ êðèì³íàö³ÿ 8-îêñî-2'-äåç îêñè à äå íî çèí-5'-òðè ôîñ ôà òó ÄÍÊ-ïîë³ìå ðà çà ìè áàê òåð³é ³ ëþäèíè Ðå çþ ìå Ìåòà. 8-îêñî à äåí³í – ðîç ïîâ ñþä æå íà ïî øêîä æå íà îñíî âà, àñî- ö³éî âà íà ç îíêî ëîã³÷íè ìè ³ íå é ðî äå ãå íå ðà òèâ íè ìè çà õâî ðþ âàí íÿ - ìè. Âîíî ìîæå âè íè êà òè âíàñë³äîê áåç ïî ñå ðåä íüî ãî îêèñ íåí íÿ àäåí³íó â ÄÍÊ àáî ïðè âáó äî âó âàíí³ îêèñ íå íî ãî dNTP. Ìå òî äè. Ðîç ðîá ëå íî åôåê òèâ íèé ñïîñ³á ñèí òå çó 8-îêñî-2'-äåç îêñè à äå - íîçèí-5'-òðè ôîñ ôà òó ³ âèâ ÷å íî éîãî âêëþ ÷åí íÿ â ÄÍÊ ð³çíè ìè ÄÍÊ- ïîë³ìå ðà çà ìè. Ðå çóëü òà òè. Ôðàã ìåíò Êëå íî âà ÄÍÊ-ïîë³- ìå ðà çè I ç íå âè ñî êîþ åôåê òèâí³ñòþ âêëþ ÷àâ oA íà âïðî òè ãóà- í³íó. Äëÿ ÄÍÊ-ïîë³ìå ðà çè a ñïîñ òåð³ãà ëî ñÿ îá ìå æå íå âêëþ ÷åí íÿ oA íà âïðî òè ãóàí³íó ³ àäåí³íó, à äëÿ ÄÍÊ-ïîë³ìå ðà çè b – íà âïðî - òè àäåí³íó, òèì³íó ³ ãóàí³íó. Âèñ íîâ êè. ßê äæå ðå ëî oA â ãå íîì³ îêèñ íåí íÿ àäåí³íó â ÄÍÊ ìîæå ìàòè á³ëüøå çíà ÷åí íÿ, í³æ îêèñ - íåí íÿ dATP. Êëþ ÷îâ³ ñëî âà: ìó òà ãå íåç, ïî øêîä æåí íÿ ÄÍÊ, îêñè äà òèâ íèé ñòðåñ, 8-îêñî à äåí³í, ÄÍÊ-ïîë³ìå ðà çè. È. Ð. Ãðèí, Ñ. Â, Âà ñèëü å âà, À. Ï. Äîâ ãåðä, Â. Í. Ñèëü íè êîâ, Ä. Î. Æàð êîâ Äèñ êðè ìè íà öèÿ 8-îêñî-2'-äåç îêñè à äå íî çèí-5'-òðè ôîñ ôà òà ÄÍÊ-ïî ëè ìå ðà çà ìè áàê òå ðèé è ÷åëîâåêà Ðå çþ ìå Öåëü. 8-îêñî à äå íèí – ðàñ ïðîñ òðà íåí íîå ïî âðåæ äåí íîå îñíî âà - íèå, àñ ñî öè è ðî âàí íîå ñ îíêî ëî ãè ÷åñ êè ìè è íå é ðî äå ãå íå ðà òèâ íû - ìè çà áî ëå âà íè ÿ ìè. Îíî ìî æåò âîç íè êàòü âñëå äñòâèå íå ïîñ ðåä- ñòâåí íî ãî îêèñ ëå íèÿ àäå íè íà â ÄÍÊ èëè ïðè âêëþ ÷å íèè îêèñ ëåí - íî ãî dNTP. Ìå òî äû. Ðàç ðà áî òàí ýô ôåê òèâ íûé ñïî ñîá ñèí òå çà 8-îêñî-2'-äåç îêñè à äå íî çèí-5'-òðè ôîñ ôà òà è èç ó÷å íî åãî âêëþ ÷å - íèå â ÄÍÊ ðàç íû ìè ÄÍÊ-ïî ëè ìå ðà çà ìè. Ðå çóëü òà òû. Ôðàã ìåíò Êëå íî âà ÄÍÊ-ïî ëè ìå ðà çû I ñ íå âû ñî êîé ýô ôåê òèâ íîñ òüþ âêëþ - ÷àë oA íà ïðî òèâ ãó à íè íà. Äëÿ ÄÍÊ-ïî ëè ìå ðà çû a íà áëþ äà ëîñü îãðà íè ÷åí íîå âêëþ ÷å íèå oA íà ïðî òèâ ãó à íè íà è àäå íè íà, à äëÿ ÄÍÊ-ïî ëè ìå ðà çû b – íà ïðî òèâ àäå íè íà, òè ìè íà è ãó à íè íà. Âû âî - äû. Êàê èñ òî÷ íèê oA â ãå íî ìå îêèñ ëå íèå àäå íè íà â ÄÍÊ ìî æåò èìåòü áîëü øåå çíà ÷å íèå, ÷åì îêèñ ëå íèå dATP. Êëþ ÷å âûå ñëî âà: ìó òà ãå íåç, ïî âðåæ äå íèå ÄÍÊ, îêñè äà òèâ - íûé ñòðåññ, 8-îêñî à äå íèí, ÄÍÊ ïî ëè ìå ðà çû. REFERENCES 1. Von Sonntag C. Free-radical-induced DNA damage and its re- pair: A chemical perspective.–Heidelberg: Springer, 2006.– 523 p. 2. Gajewski E., Rao G., Nackerdien Z., Dizdaroglu M. Modification of DNA bases in mammalian chromatin by radiation-generated free radicals // Biochemistry.–1990.–29, N 34.–P. 7876–7882. 3. Jaruga P., Zastawny T. H., Skokowski J., Dizdaroglu M., Olinski R. Oxidative DNA base damage and antioxidant enzyme activiti- es in human lung cancer // FEBS Lett.–1994.–341, N 1.–P. 59–64. 4. Shibutani S., Bodepudi V., Johnson F., Grollman A. P. Transle- sional synthesis on DNA templates containing 8-oxo-7,8-dihydro- deoxyadenosine // Biochemistry.–1993.–32, N 17.–P. 4615–4621. 5. Grin I. R., Dianov G. L., Zharkov D. O. The role of mammalian NEIL1 protein in the repair of 8-oxo-7,8-dihydroadenine in DNA // FEBS Lett.–2010.–584, N 8.–P. 1553–1557. 6. Fujikawa K., Kamiya H., Yakushiji H., Fujii Y., Nakabeppu Y., Kasai H. The oxidized forms of dATP are substrates for the hu- man MutT homologue, the hMTH1 protein // J. Biol. Chem.– 1999.–274, N 26.–P. 18201–18205. 7. Nakabeppu Y., Sakumi K., Sakamoto K., Tsuchimoto D., Tsuzuki T., Nakatsu Y. Mutagenesis and carcinogenesis caused by the oxi- dation of nucleic acids // Biol. Chem.–2006.–387, N 4.– P. 373– 379. 8. Purmal A. A., Kow Y. W., Wallace S. S. 5-Hydroxypyrimidine deoxynucleoside triphosphates are more efficiently incorpora- ted into DNA by exonuclease-free Klenow fragment than 8- oxopurine deoxynucleoside triphosphates // Nucleic Acids Res.– 1994.–22, N 19.–P. 3930–3935. 9. Chatgilialoglu C., Navacchia M. L., Postigo A. A facile one-pot synthesis of 8-oxo-7,8-dihydro-(2'-deoxy)adenosine in water // Tetrahedron Lett.–2006.–47, N 5.–P. 711–714. 10. Ludwig J. A new route to nucleoside 5'-triphosphates // Acta Bio- chim. Biophys. Acad. Sci. Hung.–1981.–16, N 3–4.–P. 131–133. 11. Leonard G. A., Guy A., Brown T., Teoule R., Hunter W. N. Con- formation of guanine-8-oxoadenine base pairs in the crystal struc- ture of d(CGCGAATT(O8A)GCG) // Biochemistry.–1992.– 31, N 36.–P. 8415–8420. 12. Showalter A. K., Lamarche B. J., Bakhtina M., Su M. I., Tang K. H., Tsai M. D. Mechanistic comparison of high-fidelity and error- prone DNA polymerases and ligases involved in DNA repair // Chem. Rev.–2006.–106, N 2.–P. 340–360. 13. Beard W. A., Wilson S. H. Structure and mechanism of DNA po- lymerase beta // Chem. Rev.–2006.–106, N 2.–P. 361–382. Received 10.01.12 309 8-OXOADENINE INCORPORATION BY DNA POLYMERASES