On asymptotic decompositions of o-solutions in the theory of quasilinear systems of difference equations

We consider a quasilinear system of difference equations with certain conditions. We prove that there exists a formal partial o-solution of this system in the form of functional series of special type. We also prove a theorem on the asymptotic behavior of this solution.

Збережено в:
Бібліографічні деталі
Дата:1997
Автори: Kostin, A.V., Skripnik, I.V.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 1997
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/156977
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On asymptotic decompositions of o-solutions in the theory of quasilinear systems of difference equations / A.V. Kostin, I.V. Skripnik // Український математичний журнал. — 1997. — Т. 49, № 5. — С. 672–677. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-156977
record_format dspace
fulltext Ukrainian Mathematical Journal, Vol. 49, No. 5, 1997 ON ASYMPTOTIC DECOMPOSITIONS OF o-SOLUTIONS IN THE THEORY OF QUASILINEAR SYSTEMS OF DIFFERENCE EQUATIONS A. V. Kos t i n a n d I. V. S k r i p n i k UDC 517.949 We consider a quasilinear system of difference equations with certain conditions. We prove that there exists a formal partial o-solution of this system in the form of functional series of special type. We also prove a theorem on the asymptotic behavior of this solution. Consider the system of difference equations n Ayk(t) = qk(t) + Epki ( t )Y i ( t ) + i=1 t ~ N, oo Z P~l-.-h, (t)y~l (t) ... yn k" ( t) , h i + . . . + k n = 2 t > t o, k = 1 . . . . . n, with the condit ions (i) Ip~l . . .h , ( / ) l < AR -(k'+'''+h"), k = l . . . . . n, k i + . . . + k n > 2, A , R ~ + ; (ii) qh(t) = o(1 ) , k = l . . . . . n, t - - ~ + ~ ; (iii) 3 P 0 = lim P(t) , Po e I~. nxn, P( t ) = (Pla(t))n'n t - -~+oo (1) (2) Assume that the characteristic numbers Xk, k = 1 . . . . . n, of the matrix P0 possess the proper ty 11 + ~'h ] ~: 0, k = l . . . . . n. Inequali ty (2) guarantees the absolute and uniform convergence of the series in system (1) in any domain of the form R 0 ~ ~ + . Furthermore, we assume that the functions qh(t), Phi(t), and pkkx ...h., k, i = 1 . . . . . n, kl +. . . + kn > 2, admit , in a certain sense (see Definit ions 6 and 7), formal expansions into series of the form Chth2 ...kpfl kl ( t ) f ~ 2 ( t ) . . . f ; P (t) , k I + . . .+kp = 0 %k2...kp ~ (I;, (3) Odessa University, Odessa. Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 49, No. 5, pp. 672--677, May, 1997. Original article submitted May 15, 1995. 0041-5995/97/4905-0747 $18.00 �9 1998 Plenum Publishing Corporation 747 748 where f t (t), k = 1 . . . . . p , is a fixed set of functions such that Aifk(t) = o(1), AOfk(t) de=f fk( t ) , In what follows, we denote the set of functions fk( t ) , k = 1 . . . . . p, by ( f ) . We rewrite system (1) as AY(t) = Q ( t ) + P ( t ) Y ( t ) + ~F(t, Y( t ) ) . Consider the series A. V. KOSTIN AND I. V. SKRIPNIK k = l . . . . . p, i = 0 , 1 , 2 . . . . . (4) s - I s-1 i lp , (5> s=0 i=0 i=0 where k = k o . . , ks-i ... lo . . . Is-1 and, for any fixed value s, the exponents ko . . . . . ks_l . . . . . lo . . . . . ls-I can be integer nonnegative numbers satisfying the condition ko + 2kl + . . . + sks_l + . . . + lo + 2ll + . . . + sls_l = s. The coefficients ck are columns of the same dimension n. The numbers s are called the orders of the correspond- ing terms in (5). Definition 1. A vector function (p(t), t ~ N, t > to, which is a finite sum o f the type Z * * n• 1 (p(t) = ckCSk(t ), c k ~ ~ , k = ko ... ks-l ... lo ... ls-1, S=$ 0 where the terms have the same order so, is called a funct ion o f order so, which is denoted as fo l lows: H(q) ( t ) ) = so. Property 1. I f l-I(q0(t)) = so and c ~ (E, then H(cqo( t ) ) = so. Property2. If H ( q o l ( t ) ) = s o and F l ( q ) 2 ( t ) ) = s o , then l-I(qOl(t) + qOz(t)) = sO. Property3. I f l ' I ( g l ( t ) ) = s l and H ( q o z ( t ) ) = s a , then I I (qo l ( t )qo2( t ) ) = Sl + s2. Definition 2. The fo l lowing series are called, respectively, the sum, difference, and product o f two formal series ~ ; = o W s and ~ ; = o V s o f t ype (5 ) : s=0 s=0 s=0
spelling nasplib_isofts_kiev_ua-123456789-1569772025-02-09T23:40:57Z On asymptotic decompositions of o-solutions in the theory of quasilinear systems of difference equations Об асимптотических разложениях o-решений в теории квазилинейных систем разностных уравнений Kostin, A.V. Skripnik, I.V. Статті We consider a quasilinear system of difference equations with certain conditions. We prove that there exists a formal partial o-solution of this system in the form of functional series of special type. We also prove a theorem on the asymptotic behavior of this solution. Досліджується квазілінійиа система різницевих рівнянь при певних умовах. Доводиться існування формального частинного о-розв'язку цієї системи у вигляді функціональних рядів спеціального типу. Доводиться також теорема про асимптотичний характер цього розв'язку. 1997 Article On asymptotic decompositions of o-solutions in the theory of quasilinear systems of difference equations / A.V. Kostin, I.V. Skripnik // Український математичний журнал. — 1997. — Т. 49, № 5. — С. 672–677. — англ. 1027-3190 https://nasplib.isofts.kiev.ua/handle/123456789/156977 517.949 en Український математичний журнал application/pdf Інститут математики НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
topic Статті
Статті
spellingShingle Статті
Статті
Kostin, A.V.
Skripnik, I.V.
On asymptotic decompositions of o-solutions in the theory of quasilinear systems of difference equations
Український математичний журнал
description We consider a quasilinear system of difference equations with certain conditions. We prove that there exists a formal partial o-solution of this system in the form of functional series of special type. We also prove a theorem on the asymptotic behavior of this solution.
format Article
author Kostin, A.V.
Skripnik, I.V.
author_facet Kostin, A.V.
Skripnik, I.V.
author_sort Kostin, A.V.
title On asymptotic decompositions of o-solutions in the theory of quasilinear systems of difference equations
title_short On asymptotic decompositions of o-solutions in the theory of quasilinear systems of difference equations
title_full On asymptotic decompositions of o-solutions in the theory of quasilinear systems of difference equations
title_fullStr On asymptotic decompositions of o-solutions in the theory of quasilinear systems of difference equations
title_full_unstemmed On asymptotic decompositions of o-solutions in the theory of quasilinear systems of difference equations
title_sort on asymptotic decompositions of o-solutions in the theory of quasilinear systems of difference equations
publisher Інститут математики НАН України
publishDate 1997
topic_facet Статті
url https://nasplib.isofts.kiev.ua/handle/123456789/156977
citation_txt On asymptotic decompositions of o-solutions in the theory of quasilinear systems of difference equations / A.V. Kostin, I.V. Skripnik // Український математичний журнал. — 1997. — Т. 49, № 5. — С. 672–677. — англ.
series Український математичний журнал
work_keys_str_mv AT kostinav onasymptoticdecompositionsofosolutionsinthetheoryofquasilinearsystemsofdifferenceequations
AT skripnikiv onasymptoticdecompositionsofosolutionsinthetheoryofquasilinearsystemsofdifferenceequations
AT kostinav obasimptotičeskihrazloženiâhorešeniivteoriikvazilineinyhsistemraznostnyhuravnenii
AT skripnikiv obasimptotičeskihrazloženiâhorešeniivteoriikvazilineinyhsistemraznostnyhuravnenii
first_indexed 2025-12-01T20:43:45Z
last_indexed 2025-12-01T20:43:45Z
_version_ 1850340095357353984