Синтез 3'- та 3,5-модифікованих олігонуклеотидів на функціоналізованому силікагелі «Силохром-2»
Описано отримання З'-моно- та 3' ,5' -біс-мічених олігонуклеотидів на новому полімерному носієві з використанням мікросферичного силікагелю «Силохром-2», функціоналізованому флуоресцеїном. На цьому полімері твердофазним фосфітамідним методом синтезовано олігонуклеотид (dT)15, шр місти...
Збережено в:
| Опубліковано в: : | Біополімери і клітина |
|---|---|
| Дата: | 2007 |
| Автори: | , , |
| Формат: | Стаття |
| Мова: | Ukrainian |
| Опубліковано: |
Інститут молекулярної біології і генетики НАН України
2007
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/156979 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Синтез 3'- та 3,5-модифікованих олігонуклеотидів на функціоналізованому силікагелі «Силохром-2» / І.Я. Дубей, Л.В. Дубей, Д.М. Федоряк // Біополімери і клітина. — 2007. — Т. 23, № 2. — С. 137-142. — Бібліогр.: 36 назв. — укр., англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-156979 |
|---|---|
| record_format |
dspace |
| spelling |
Дубей, І.Я. Дубей, Л.В. Федоряк, Д.М. 2019-06-19T12:15:53Z 2019-06-19T12:15:53Z 2007 Синтез 3'- та 3,5-модифікованих олігонуклеотидів на функціоналізованому силікагелі «Силохром-2» / І.Я. Дубей, Л.В. Дубей, Д.М. Федоряк // Біополімери і клітина. — 2007. — Т. 23, № 2. — С. 137-142. — Бібліогр.: 36 назв. — укр., англ. 0233-7657 http://dx.doi.org/10.7124/bc.000760 https://nasplib.isofts.kiev.ua/handle/123456789/156979 577.113.6:542.95 Описано отримання З'-моно- та 3' ,5' -біс-мічених олігонуклеотидів на новому полімерному носієві з використанням мікросферичного силікагелю «Силохром-2», функціоналізованому флуоресцеїном. На цьому полімері твердофазним фосфітамідним методом синтезовано олігонуклеотид (dT)15, шр містить залишок барвника на 3'-кінці Постсинтетичною 5'-модифікацією З'-конюгата вдалося отримати олігомер, мічений двома молекулами флуоресцеїну. У майбутньому це буде використано для синтезу флуоресцентних зондів для детекції нуклеїнових кислот. The preparation of 3'-mono- and 3', 5' -bis-labeled oligonucleotides on a new fluorescein-functionalized polymer support based on Silochrom-2 microspherical silica is described. Oligonucleotide (dT)15 containing a dye residue at 3'-end was synthesized on this support by solid-phase phosphoramidite method. Post-synthetic 5'-modification of 3'-conjugate allowed obtaining double dye-labeled oligomer. In the future it will be used for the synthesis of fluorescent probe for nucleic acids detection. Описано получение З'-моно- и 3',5'-бис-меченных олигонуклеотидов на новом полимерном носителе с использованием микосферического силикагеля «Силохром2», функционализированном флуоресиеином. На этом полимере твердофазным фосфитамидным методом синтезирован олигонуклеотид (dT)15, содержащий остаток красителя на 3'-конце. Постсинтетическая 5'-модификация З'-конъюгата позволила получить олигомер, меченный двумя молекулами флуоресцеина. В будущем это будет использовано для синтеза флуоресцентных зондов для детекции нуклеиновых кислот. uk Інститут молекулярної біології і генетики НАН України Біополімери і клітина Біоорганічна хімія Синтез 3'- та 3,5-модифікованих олігонуклеотидів на функціоналізованому силікагелі «Силохром-2» Синтез 3'- и 3', 5'-модифицированных олигонуклеотидов на функционализированном силикагеле «Силохром-2» Synthesis of 3'- and 3',5'-modified oligonucleotides on functionalized silica Silochrom-2 Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Синтез 3'- та 3,5-модифікованих олігонуклеотидів на функціоналізованому силікагелі «Силохром-2» |
| spellingShingle |
Синтез 3'- та 3,5-модифікованих олігонуклеотидів на функціоналізованому силікагелі «Силохром-2» Дубей, І.Я. Дубей, Л.В. Федоряк, Д.М. Біоорганічна хімія |
| title_short |
Синтез 3'- та 3,5-модифікованих олігонуклеотидів на функціоналізованому силікагелі «Силохром-2» |
| title_full |
Синтез 3'- та 3,5-модифікованих олігонуклеотидів на функціоналізованому силікагелі «Силохром-2» |
| title_fullStr |
Синтез 3'- та 3,5-модифікованих олігонуклеотидів на функціоналізованому силікагелі «Силохром-2» |
| title_full_unstemmed |
Синтез 3'- та 3,5-модифікованих олігонуклеотидів на функціоналізованому силікагелі «Силохром-2» |
| title_sort |
синтез 3'- та 3,5-модифікованих олігонуклеотидів на функціоналізованому силікагелі «силохром-2» |
| author |
Дубей, І.Я. Дубей, Л.В. Федоряк, Д.М. |
| author_facet |
Дубей, І.Я. Дубей, Л.В. Федоряк, Д.М. |
| topic |
Біоорганічна хімія |
| topic_facet |
Біоорганічна хімія |
| publishDate |
2007 |
| language |
Ukrainian |
| container_title |
Біополімери і клітина |
| publisher |
Інститут молекулярної біології і генетики НАН України |
| format |
Article |
| title_alt |
Синтез 3'- и 3', 5'-модифицированных олигонуклеотидов на функционализированном силикагеле «Силохром-2» Synthesis of 3'- and 3',5'-modified oligonucleotides on functionalized silica Silochrom-2 |
| description |
Описано отримання З'-моно- та 3' ,5' -біс-мічених олігонуклеотидів на новому полімерному носієві з використанням мікросферичного силікагелю «Силохром-2», функціоналізованому флуоресцеїном. На цьому полімері твердофазним фосфітамідним методом синтезовано олігонуклеотид (dT)15, шр містить залишок барвника на 3'-кінці Постсинтетичною 5'-модифікацією З'-конюгата вдалося отримати олігомер, мічений двома молекулами флуоресцеїну. У майбутньому це буде використано для синтезу флуоресцентних зондів для детекції нуклеїнових кислот.
The preparation of 3'-mono- and 3', 5' -bis-labeled oligonucleotides on a new fluorescein-functionalized polymer support based on Silochrom-2 microspherical silica is described. Oligonucleotide (dT)15 containing a dye residue at 3'-end was synthesized on this support by solid-phase phosphoramidite method. Post-synthetic 5'-modification of 3'-conjugate allowed obtaining double dye-labeled oligomer. In the future it will be used for the synthesis of fluorescent probe for nucleic acids detection.
Описано получение З'-моно- и 3',5'-бис-меченных олигонуклеотидов на новом полимерном носителе с использованием микосферического силикагеля «Силохром2», функционализированном флуоресиеином. На этом полимере твердофазным фосфитамидным методом синтезирован олигонуклеотид (dT)15, содержащий остаток красителя на 3'-конце. Постсинтетическая 5'-модификация З'-конъюгата позволила получить олигомер, меченный двумя молекулами флуоресцеина. В будущем это будет использовано для синтеза флуоресцентных зондов для детекции нуклеиновых кислот.
|
| issn |
0233-7657 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/156979 |
| citation_txt |
Синтез 3'- та 3,5-модифікованих олігонуклеотидів на функціоналізованому силікагелі «Силохром-2» / І.Я. Дубей, Л.В. Дубей, Д.М. Федоряк // Біополімери і клітина. — 2007. — Т. 23, № 2. — С. 137-142. — Бібліогр.: 36 назв. — укр., англ. |
| work_keys_str_mv |
AT dubeiíâ sintez3ta35modifíkovaniholígonukleotidívnafunkcíonalízovanomusilíkagelísilohrom2 AT dubeilv sintez3ta35modifíkovaniholígonukleotidívnafunkcíonalízovanomusilíkagelísilohrom2 AT fedorâkdm sintez3ta35modifíkovaniholígonukleotidívnafunkcíonalízovanomusilíkagelísilohrom2 AT dubeiíâ sintez3i35modificirovannyholigonukleotidovnafunkcionalizirovannomsilikagelesilohrom2 AT dubeilv sintez3i35modificirovannyholigonukleotidovnafunkcionalizirovannomsilikagelesilohrom2 AT fedorâkdm sintez3i35modificirovannyholigonukleotidovnafunkcionalizirovannomsilikagelesilohrom2 AT dubeiíâ synthesisof3and35modifiedoligonucleotidesonfunctionalizedsilicasilochrom2 AT dubeilv synthesisof3and35modifiedoligonucleotidesonfunctionalizedsilicasilochrom2 AT fedorâkdm synthesisof3and35modifiedoligonucleotidesonfunctionalizedsilicasilochrom2 |
| first_indexed |
2025-11-25T21:04:13Z |
| last_indexed |
2025-11-25T21:04:13Z |
| _version_ |
1850545950059134976 |
| fulltext |
Synthesis of 3’- and 3’,5’-modified
oligonucleotides on functionalized silica
"Silochrom-2"
I. Ya. Dubey, L. V. Dubey, D. M. Fedoryak1
Institute of Molecular Biology and Genetics, NAS of Ukraine,
150 Zabolotny str., Kyiv, 03143, Ukraine
1 Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine
1 Murmanska str., Kyiv, 02094, Ukraine
dubey@imbg.org.ua
The preparation of 3’-mono- and 3’, 5’-bis-labeled oligonucleotides on a new
fluorescein-functionalized polymer support based on Silochrom-2 microspherical silica is described.
Oligonucleotide (dT)
15
containing a dye residue at 3’-end was synthesized on this support by
solid-phase phosphoramidite method. Post-synthetic 5’-modification of 3’-conjugate allowed
obtaining double dye-labeled oligomer.
Keywords: oligonucleotide conjugates, fluorescent labels, solid-phase synthesis, functionalization.
Introduction. Progress of biotechnology and
medicine attracted special attention to conjugates
formed by oligonucleotides and molecules with
some specific features, i.e. reporting, lipophilic
and transport groups, proteins, chemical
nucleases, etc. [1–7]. Chemically modified
oligonucleotides have been widely used as
DNA/RNA-probes, primers for polymerase chain
reaction (PCR), in sequencing of nucleic acids
(NA), in the investigations of protein-nucleic acid
interactions, etc. [1, 6–9]. Non-radioactively
labeled oligonucleotides with fluorescent,
chemiluminescent, affine or spin reporter groups
gradually became the reagents of choice for NA
detection. The development of new methods of
covalent labeling of oligonucleotides and
improving the detection sensitivity are still the
issues of great importance.
There are two basic approaches to oligonucleotide
conjugates preparation [1–5]. The first approach is
based on the synthesis and isolation of oligonucleotides
functionalized by reactive groups, most commonly
amino- or mercaptoalkyl functions, with subsequent
attachment of reporter molecules. The second way is
based on the direct introduction of reporter group
during solid-phase synthesis of oligonucleotide
sequence. The key factor in this case is stability of the
attached group under conditions of oligonucleotide
synthesis and deblocking. The polymer supports
containing reporter groups attached via special linkers
suitable for synthesizing the nucleotide sequence
resulted in the formation of 3 -labeled oligomers have
137
ISSN 0233-7657. Biopolymers and cell. 2007. Vol. 23. ISS 2. Translated from Ukrainia
BIOORGANIC CHEMISTRY
ã I. YA. DUBEY, L. V. DUBEY, D. M. FEDORYAK, 2007
been described. Some of these supports are
commercially available from Glen Research, TriLink,
Synthegen, Sigma-Genosys, and other companies.
Recently we have obtained fluorescein-
functionalized polymer support 1 based on
microspherical aerosilica Silochrom-2 (Fig.1) [10].
This polymer allows performing solid-phase synthesis
of fluorescently labeled NA fragments. Current work
presents the study on synthesis of mono- and
bis-labeled oligonucleotides on this support.
Materials and Methods. The following reagents
have been used: 1.1’-carbonyldiimidazole (CDI) and
fluorescein-5-isothiocyanate (FITC, isomer I) (Merck,
Germany), protected deoxythymidine-3’-
phosphoramidite and tetrazole for oligonucleotides
synthesis, tris(hydroxymethyl)aminomethane,
acrylamide and methylene-bis-acrylamide for
electrophoresis (Sigma, USA). Other reagents and
solvents were purchased from Macrochim, Ukraine.
Acetonitrile was distilled over P
2
O
5
and calcium
hydride, dioxane was distilled from NaOH. Synthesis
of polymer 1 was performed in accordance with [10].
Absorption spectra were recorded on Shimadzu
UV-3100 spectrophotometer (Shimadzu, Japan).
Synthesis of oligonucleotide conjugates with
fluorescein Solid-phase synthesis of oligonucleotide
(dT)
15
was performed on polymer 1 on 0.25 mkmol
scale by standard phosphoramidite method using
Applied Biosystems Model 381A synthesizer. The time
of coupling reaction was increased to 5 min at the step
of the first nucleotide component addition. On
completion of the sequence synthesis and final
5'-detritylation, polymer support was separated into
two parts which were used for the preparation of two
different fluorescein conjugates.
To obtain 3'-labelled oligomer 2, after synthesis of
(dT)
15
the polymer was treated with conc. NH
4
OH (1 ml,
50°C, 6 h). Deblocked product was obtained by
desalting of ammonia solution on PD-10 column
(Pharmacia, Sweden), 0.05 M triethylammonium
bicarbonate buffer (TEAB, pH 7.8) was used as eluent.
Conjugate 2 was purified by electrophoresis in 20%
polyacrylamide gel. UV-Vis: A
260
/A
494
= 2.04.
To synthesize oligomer with two terminal
fluorescent groups, after the completion of (dT)
15
sequence elongation aminoalkyl group was introduced
at the 5'-end of oligonucleotide linked to the polymer
support, using carbonyldiimidazole method [11].
Detritylated polymer was treated with 1 ml of 0.3 M
CDI solution in dry dioxane for 45 min, washed with
dioxane (5 x 1 ml), and then treated with 1 ml of 0.2 M
solution of hexamethylenediamine in the
dioxane-water mixture (9:1) for 45 min. Polymer was
washed with dioxane (3 x 1 ml), methanol (3 x 1 ml),
and ether (3 x 1 ml). Oligonucleotide 3 containing
fluorescein residue at 3'-end and aliphatic amino group
at 5'-end was cleaved from the polymer and deblocked
by the treatment of support with concentrated
ammonia, desalted and isolated by gel electrophoresis
as described above. Amino-modified oligomer 3 moves
in gel slower than non-functionalized conjugate 2. 5'
-Aminoalkylated conjugate 3 (3 A
260
, ~21 nmol) was
treated with FITC in the mixture of 0.1 M
carbonate-bicarbonate buffer (pH 9.5) and
138
DUBEY I. YA., DUBEY L. V., FEDORYAK D. M.
1
S
N H N H N H
O
O
O
OPiv PivO
NH P
DMTrO
O
O
O
O
(CH 2 ) 3 NHCO(CH 2 ) 2 CONH(CH 2 ) 2 - , Piv = (CH 3 ) 3 C-CO - P = (Silica)
Fig.1 Structure of polymer support used
for the synthesis of fluorescein labeled
oligonucleotides: Silica – silica gel
Silochrom 2
dimethylformamide (2:1) using the modified method
[12]. FITC solution in DMF (10 mg/ml, 75 eq. of the
reagent to oligonucleotide) was added to oligomer 3
solution in aqueous buffer and kept overnight at room
temperature. Conjugate product was separated from the
excess of non-bound dye by gel filtration. Reaction
mixture was diluted with two volumes of water and
applied on a column (PD-10) equilibrated with 0.05 M
TEAB-buffer (pH 7.8) containing 5% CH
3
CN. Elution
was performed using the same buffer. Double labeled
conjugate 4 was purified by gel electrophoresis.
Oligomer with two reporter groups moves slower in the
gel than the mono-labeled analogue. The yield of
conjugate 4 was 1.4 A
260
(~8.5 nmol, 40%). UV-Vis:
A
260
/A
494
= 1.18.
Results and Discussion. A number of supports for
the synthesis of oligonucleotides modified with
fluorescent dyes, including fluorescein, rhodamine etc.,
are described in literature [13–17]. The preparation of
polymer supports for synthesis of 3'-labeled
oligonucleotides requires a bifunctional linker which
allows simultaneous attachment of both reporter group
and oligonucleotide. Generally, linker structures are
based on 2-substituted 1,3-propanediol syntons. We
used similar structure of 3-aminopropane-1,2-diol for
linker synthesis. The linker was introduced into highly
efficient support based on microspherical silica gel
Silochrom-2 containing aminopropyl-succinate-
ethylenediamine spacer [18]. As a result
fluorescein-modified polymer 1 has been obtained
(Fig.1) [10]. The support contained fluorescein residue
protected with two pivaloyl groups in order to avoid
side reaction on phenolic hydroxyl of the dye [13, 19,
20]. Diacylated fluorescein lactone is deblocked easily
with the formation of normal dye quinoid structure
during amonolysis.
Model pentadecathymidylate (dT)
15
was
synthesized on polymer 1 using traditional
phosphoramidite chemistry. First coupling reaction
time was longer than those on subsequent stages of
synthesis (5 min vs. 2 min). Prolongation of the first
nucleotide addition is recommended for the synthesis
on modified polymers with large reporter molecules
attached. In this case, negative effect of steric factor is
compensated. The yield of the first coupling reaction
was 96% and the yields of the subsequent
condensations exceeded 98%.
To obtain 3'-fluorescein derivative 2, on sequence
completion the oligonucleotide was cleaved from the
polymer and deblocked by amonolysis, and then
conjugate 2 was purified by electrophoresis in
polyacrylamide gel (Scheme). Fluorescein-containing
oligonucleotides are easily detected in the gel by
yellowish-green fluorescence under longwave UV
irradiation (365 nm). Dye containing oligomers are less
mobile in the gel comparing to non-modified ones.
Significant amount of non-fluorescent oligomeres
was detected in the reaction mixture formed during
(dT)
15
synthesis on polymer 1. Perhaps this is due to the
fact that during the synthesis of polymer 1 the coupling
of the dye to O-DMTr-protected amino linker was not
quantitative (DMTr group and fluorescein contents in
the polymer were 38 and 28 mkmol/g, respectively
[10]), therefore a part of oligonucleotide sequences was
synthesized on the linker which did not contain the dye.
However, electrophoretic separation of
fluorescein-modified oligomeres from non-modified
sequences is fully efficient due to different mobilities of
labeled and non-labeled products. The introduction of
aminoalkyl group at the 5'-end decreases the mobility
of oligomeres additionally.
The attachment of the second reporter group to the
5'-end of 3'-conjugates is possible [13-15, 21-23].
Numerous examples of double-labeled
oligonucleotides have been reported. For example,
double dye labeled oligomeres use the effect of
fluorescence resonance energy transfer (FRET)
between donor and acceptor chromophores for
homogeneous NA detection, PCR fragments analysis,
etc. [8, 24 – 30]. Elegant technology for NA
hybridization detecting in the solution uses so called
“molecular beacons” – oligonucleotides capable of
forming hairpin structures modified by spatially close
terminal fluorophore and a quencher group.
Hybridization of such probe with complementary NA
leads to the separation of dyes resulting in fluorescence
increase [31]. There are also some other technologies
for NA detection based on similar principles
(Scorpions, Sunrise primers, LUX primers, etc.).
Corresponding labeled oligonucleotides are known by
a common name - light-up probes, whose fluorescence
139
SYNTHESIS OF 3’- AND 3’,5’-MODIFIED OLIGONUCLEOTIDES
increases upon binding to NA targets [28, 32]. The
custom synthesis of double-labeled oligonucleotides is
currently available, however, they are very expensive
(for 0.2 mkmol scale synthesis the price varies in the
range $300-600, depending on the type of labels).
Second reporter group may be introduced directly
during solid-phase synthesis, using phosphoramidite or
H-phosphonate derivatives of labels to be attached
[2–5]. We have performed post-synthetic modification
by linking aminohexyl group to the 5'-end of oligomer
2 at the first step and isolating functionalized
oligonucleotide 3 containing dye at the 3'-end. 5'
-Aminoalkyl group was introduced using
carbonyldiimidazole method, which consists in the
treatment of the protected oligonucleotide linked to the
polymer with CDI and then with
140
DUBEY I. YA., DUBEY L. V., FEDORYAK D. M.
S
NH NH NH
O
FluHO
5'-HO-(dT)
15 O P O
O
O
O
O
OPO
HO Flu
O
NH NH NH
S
S
NH NH NH
O
FluHO
O P O
O
O
S
Flu NH NH
1
NH4OH
1. CDI
2. H2N(CH2)6NH2
3. NH4OH
Flu-N=C=S (FITC)
OO OH
COOH
Flu-
2
3
4
-
-
-
H2N(CH2)6NHCOO-(dT)15
(CH2)6NHCOO-(dT)15
(i)
Scheme. Synthesis of mono- and bis-labeled oligonucleotides
hexamethylenediamine [11]. Oligomer 3 was isolated
by gel electrophoresis after deblocking. Functionalized
conjugate 3 reacted with classic FITC in
aqueous-organic medium at pH 9.5 [12]. 75-Fold
excess of the dye over oligonucleotide was used. The
second fluorophore was attached to oligomer 3 under
these conditions almost quantitatively, according to
HPLC data, with the formation of double labeled (dT)
15
.
Therefore, model oligonucleotide 4 containing two
fluorescein residues at 3'- and 5'-ends was synthesized.
The yield of product 4 after electrophoresis purification
was about 40%. These bis-labeled oligonucleotides
may be applied as more sensitive, comparing to
mono-labeled analogues, fluorescent NA probes.
Fluorescein-modified oligonucleotides were
desalted on Sephadex G-25 using gel filtration (PD-10
column, Pharmacia) in 0.05 M TEAB buffer, pH 7.8.
The presence of small amount of organic solvent in
eluent (3-5% acetonitrile or ethanol) decreases
non-specific sorption of products on Sephadex,
especially when isolating double-labeled
oligonucleotides.
UV-Vis spectra of conjugates 2 and 4 (Fig.2)
clearly demonstrate the presence of one or two
fluorescein residues. Oligonucleotide part does not
adsorb in the visible region of the spectrum where the
intensive band of dye is observed (l
max
=494 nm),
however, in the UV region (260 nm area) both
heterocyclic bases of nucleotides and the dye adsorb.
Extinction coefficient e
260
is 122000 M-1.cm-1 for (dT)
15
(calculated using method [33]). Literature data on
extinction coefficients of fluorescein within conjugates
vary slightly which is due to the dependence of
adsorption of this dye (especially in the visible region
of the spectrum) on pH and some other factors [34].
After covalent attachment of the dye, its adsorption in
the visible area of the spectrum decreases by 10% in
average [35]. According to [35], in the basic medium
fluorescein (as FITC derivative) extinction coefficients
are e
260
= 13700 and e
494
= 68000 M-1.cm-1. According to
[36], these coefficients are 20900 and 73000 M-1.cm-1,
respectively.
Theoretical ratios of conjugate adsorption
intensities in UV and visible areas A
260
/A
494,
calculated
using the data from [35], are 2.00 and 1.10 for mono-
and bis-labeled (dT)
15
, and according to [36] – 1.96 and
1.12, respectively. These values are in good agreement
with experimental data for conjugates 2 and 4 (A
260
/A
494
are 2.04 and 1.18 respectively).
Therefore, the synthesis of oligonucleotide
conjugates with one and two fluorophores is described.
Polymer 1 was used as the support for direct
solid-phase synthesis of 3'-fluorescein derivative of
(dT)
15
, whereas 5 -end functionalization of the obtained
conjugate results in obtaining of oligomers with two
reporter groups. The method is also suitable for the
preparation of oligomeres containing two different
fluorescein labels. Almost any reporter molecule can be
attached to conjugate 3 using corresponding derivative
capable of selective modification of amino groups.
There is a possibility to obtain oligomers with terminal
modifications of two different types, e.g. 3'-fluorescein
labeled oligonucleotide 5'-conjugates with peptides,
chemical nucleases or other molecules.
È. ß. Äó áåé, Ë. Â. Äó áåé, Ä. Ì. Ôå äî ðÿê
Ñèí òåç 3¢- è 3¢,5¢-ìî äè ôè öè ðî âàí íûõ îëè ãî íóê ëå î òè äîâ íà ôóíê öè î -
íà ëè çè ðî âàí íîì ñè ëè êà ãå ëå “Ñè ëîõ ðîì-2”
Ðå çþ ìå
Îïè ñà íî ïî ëó ÷å íèå 3’-ìîíî- è 3’,5’-áèñ-ìå ÷åí íûõ îëè ãî íóê ëå î òè äîâ íà
íî âîì ïî ëè ìåð íîì íî ñè òå ëå ñ èñ ïîëü çî âà íè åì ìèê ðîñ ôå ðè ÷åñ êî ãî ñè -
ëè êà ãå ëÿ “Ñè ëîõ ðîì2”, ôóíê öè î íà ëè çè ðî âàí íîì ôëó î ðåñ öå è íîì. Íà
ýòîì ïî ëè ìå ðå òâåð äî ôàç íûì ôîñ ôè òà ìèä íûì ìå òî äîì ñèí òå çè ðî -
âàí îëè ãî íóê ëå î òèä (dT)
15
, ñî äåð æà ùèé îñòà òîê êðà ñè òå ëÿ íà 3’-êîí -
öå. Ïîñ òñèí òå òè ÷åñ êàÿ 5’-ìî äè ôè êà öèÿ 3’-êîíú þ ãà òà ïî çâî ëè ëà
ïî ëó ÷èòü îëè ãî ìåð, ìå ÷åí íûé äâó ìÿ ìî ëå êó ëà ìè ôëó î ðåñ öå è íà.  áó -
äó ùåì ýòî áó äåò èñ ïîëü çî âà íî äëÿ ñèí òå çà ôëó î ðåñ öåí òíûõ çîí äîâ
äëÿ äå òåê öèè íóê ëå è íî âûõ êèñ ëîò.
Êëþ ÷å âûå ñëî âà: îëè ãî íóê ëå î òèä íûå êîíú þ ãà òû, ôëó î ðåñ öåí òíûå
ìåò êè, òâåð äî ôàç íûé ñèí òåç, ôóíê öè î íà ëè çà öèÿ.
141
SYNTHESIS OF 3’- AND 3’,5’-MODIFIED OLIGONUCLEOTIDES
Fig.2 Absorption spectra of oligonucleotide conjugates in 0.05 M TEAB
(pH 8): a-(dT)
15
-Flu (2); b-Flu-(dT)
15
-Flu (4)
a
b
nm
REFERENCES:
1.Goodchild J. Conjugates of oligonucleotides and modified
oligonucleotides: a review of their synthesis and properties //
Bioconjugate Chem.—1990.—1.—P. 165—187.
2.Beaucage S. L., Iyer R. P. The functionalization of oligonucleotides
via phosphoramidite derivatives // Tetrahedron.—1993.—49.—P.
1925—1963.
3.Protocols for oligonucleotide conjugates: synthesis and analytical
techniques // Methods in molecular biology / Ed. S.
Agrawal.—Totowa: Humana press, 1993.—Vol. 26.—390 p.
4.Êîð øóí Â. À., Áåð ëèí Þ. À. Ââå äå íèå íå ðà äè î àê òèâ íûõ ðå ïîð -
òåð íûõ ãðóïï â ñèí òå òè ÷åñ êèå îëè ãî íóê ëå î òè äû è èõ äå òåê öèÿ //
Áè î îðã. õè ìèÿ.—1994.—20, ¹ 6.—C. 565—616.
5.Synthesis of modified oligonucleotides and conjugates // Current
Protocols in Nucleic Acid Chemistry / Eds S. L Beaucage et
al.—New York: John Wiley & Sons, 2003.—P. 4.0.1—4.9.28.
6.Reese C. B. Oligo- and poly-nucleotides: 50 years of chemical
synthesis // Org. Biomol. Chem.—2005.—3.—P. 3851—3868.
7.Da Ros T., Spalluto G., Prato M., Saison-Behmoaras T., Boutorine A.,
Cacciari B. Oligonucleotides and oligonucleotide conjugates: a new
approach for cancer treatment // Curr. Med. Chem.—2005.—12.—P.
71—88.
8.Millar D. P. Fluorescence studies of DNA and RNA structure and
dynamics // Curr. Opin. Struct. Biol.—1996.—6.—P. 322—326.
9.The Handbook—A guide to fluorescent probes and labeling
technologies // Invitrogen-Molecular Probes / Ed. R. P.
Haughland.—Eugene, 2005.—1136 p.
10.Dubey L. V., Dubey I. Y. Preparation of bifunctiomal silica polymer
support for the synthesis of 3’-labeled oligonucleotides // Áiî ïîë iìå -
ðè i êëiòè íà.—2005.—21, ¹ 4.—Ñ. 365—369.
11.Wachter L., Jablonski J., Ramachandran K. L. A simple and efficient
procedure for the synthesis of 5’-aminoalkyl oligonucleotides //
Nucl. Acids Res.—1986.—14.—P. 7985—7994.
12.Agrawal S., Christodoulou C., Gait M. J. Efficient methods for
attaching non-radioactive labels to the 5’ ends of synthetic
oligodeoxyribonucleotides // Nucl. Acids Res.—1986.—14.—P.
6227—6245.
13.Theisen P., McCollum C., Upadhya K., Jacobson K., Vu H., Andrus
A. Fluorescent dye phosphoramidite labelling of oligonucleotides //
Tetrahedron Lett.—1992.—33.—P. 5033—5036.
14.Mullah B., Andrus A. Automated synthesis of double dye-labeled
oligonucleotides using tetramethylrhodamine (TAMRA) solid
supports // Tetrahedron Lett.—1997.—38.—P. 5751—5754.
15.Mullah B., Livak K., Andrus A., Keney P. Efficient synthesis of
double dye-labeled oligodeoxyribonucleotide probes and their
application in a real time PCR assay // Nucl. Acids
Res.—1998.—26.—P. 1026—1031.
16.Korshun V. A., Balakin K. V., Proskurina T. S., Mikhalev I. I.,
Malakhov A. D., Berlin Y. A. A pyrene secopseudonucleoside in
constructing interaction-sensitive fluorescent DNA probes //
Nucleosides and Nucleotides.—1999.—18.—P.2661—2676.
17.Stetsenko D. A., Gait M. J. A convenient solid-phase method for
synthesis of 3’-conjugates of oligonucleotides // Bioconjugate
Chem.—2001.—12.—P. 576—586.
18.Äó áåé È. ß., Ëÿ ïè íà Ò. Â., Ôå äî ðÿê Ä. Ì. Ìèê ðîñ ôå ðè ÷åñ êèé àý -
ðî ñè ëî ãåëü “Ñè ëîõ ðîì-2”—âû ñî êî ýô ôåê òèâ íûé íî ñè òåëü äëÿ
òâåð äî ôàç íî ãî ñèí òå çà îëè ãî íóê ëå î òè äîâ // Áè î îðã. õè -
ìèÿ.—1993.—19, ¹ 5.—C. 589—592.
19.Behrens C., Dahl O. Synthesis of achiral linker reagents for direct
labelling of oligonucleotides on solid supports // Nucleosides and
Nucleotides.—1999.—18.—P. 291—305.
20.Laurent A., Debart F., Lamb N., Rayner B. Esteraze-triggered
fluorescence of fluorogenic oligonucleotides // Bioconjugate
Chem.—1997.—8.—P. 856—861.
21.Agrawal S., Zamecnik P. C. Site specific functionalization of
oligonucleotides for attaching two different reporter groups // Nucl.
Acids Res.—1990.—18.—P. 5419—5423.
22.Kahl J. D., McMinn D. L., Greenberg M. M. High-yielding method for
on-column derivatization of protected oligodeoxynucleotides and its
application to the convergent synthesis of 5’, 3’-bis-conjugates // J.
Org. Chem.—1998.—63.—P. 4870—4871.
23.Dubey I., Pratviel G., Meunier B. Modification of the thiourea linkage
of fluorescein-oligonucleotide conjugate to a guanidinium motif
during ammonia deprotection // Bioconjugate
Chem.—1998.—9.—P. 627—632.
24.Ju J., Ruan C., Fuller C. W., Glazer A. N., Mathies R. A. Fluorescence
energy transfer dye-labeled primers for DNA sequencing and
analysis // Proc. Nat. Acad. Sci. USA.—1995.—92.—P.
4347—4351.
25.Glazer A. N., Mathies R. A. Energy-transfer fluorescent reagents for
DNA analyses // Curr. Opin. Biotechnol.—1997.—8.—P. 94—102.
26.Okamura Y., Kondo S., Sase I., Suga T., Mise K., Furusawa I.,
Kawakami S., Watanabe Y. Double-labeled donor probe can enhance
the signal of fluorescence resonance energy transfer (FRET) in
detection of nucleic acids hybridization // Nucl. Acids
Res.—2000.—28.—P. e107.
27.Yamane A. MagiProbe: a novel fluorescence quenching-based
oligonucleotide probe carrying a fluorophore and intercalator // Nucl.
Acids Res.—2002.—30.—P. e97.
28.Wong M. L., Medrano J. F. Real-time PCR for mRNA quantitatiom //
BioTechniques.—2005.—39.—P. 75—85.
29.Metzker M. L. Emerging technologies in DNA sequencing // Genome
Res.—2005.—15.—P. 1767—1776.
30.Dirks R. W., Tanke H. J. Advances in fluorescent tracking of nucleic
acids in living cells // BioTechniques.—2006.—40.—P. 489—496.
31.Tyagi S., Kramer F. R. Molecular beacons—probes that fluoresce
upon hybridization // Nat. Biotechnol.—1996.—14.—P. 303—308.
32.Isacsson J., Cao I., Ohlson L., Nordgren S., Svanvik N., Westmen G.,
Kubista M., Sjoback R., Sehlstedt U. Rapid and specific detection of
PCR products using light-up probes // Mol. Cell
Probes.—2000.—17.—P. 321—328.
33.Handbook of Biochemistry and Molecular Biology / Ed. G.
Fasman.—Boca Raton: CRC press, 1975.—Vol. 1.—175 p.
34.Sjoback R., Nygren J., Kubista M. Characterization of
fluorescein-oligonucleotide conjugates and measurement of local
electrostatic potential // Biopolymers.—1998.—46.—P. 445—453.
35.Glen Research Product Files:
http://www.glenres.com/index.htmli/ProductFiles/10-1963.html
36.Edelman L. M., Cheong R., Kahn J. D. Fluorescence resonance energy
transfer over ~130 basepairs in hyperstable Lac repressor-DNA loops
// Biophys. J.—2003.—84.—P. 1131—1145.
ÓÄÊ 577.113.6:542.95
Íàäiéøëà äî ðå äàêöi¿ 26.10.06
142
DUBEY I. YA., DUBEY L. V., FEDORYAK D. M.
|