Влияние индуцирующих и селективных агентов на биосинтез нового антистафилококкового антибиотика батумина

Использование высоких концентраций антистафилококкового антибиотика батумина для повы­шения биосинтетической активности собственного штамма-продуцента позволило отобрать варианты с повышенной продуктивностью. Максимально активный клон Pseudomonas batumici № 9 синтезировал 60—70 мг/л батумина, что в...

Full description

Saved in:
Bibliographic Details
Published in:Біополімери і клітина
Date:2007
Main Authors: Чуркина, Л.Н., Кравец, А.Н., Клочко, В.В.
Format: Article
Language:Russian
Published: Інститут молекулярної біології і генетики НАН України 2007
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/156995
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Влияние индуцирующих и селективных агентов на биосинтез нового антистафилококкового антибиотика батумина / Л.Н. Чуркина, А.Н. Кравец, В.В. Клочко // Біополімери і клітина. — 2007. — Т. 23, № 2. — С. 108-114. — Бібліогр.: 24 назв. — рос., англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-156995
record_format dspace
spelling Чуркина, Л.Н.
Кравец, А.Н.
Клочко, В.В.
2019-06-19T12:25:08Z
2019-06-19T12:25:08Z
2007
Влияние индуцирующих и селективных агентов на биосинтез нового антистафилококкового антибиотика батумина / Л.Н. Чуркина, А.Н. Кравец, В.В. Клочко // Біополімери і клітина. — 2007. — Т. 23, № 2. — С. 108-114. — Бібліогр.: 24 назв. — рос., англ.
0233-7657
http://dx.doi.org/10.7124/bc.00075C
https://nasplib.isofts.kiev.ua/handle/123456789/156995
615.33.015.4:579.861.2.07
Использование высоких концентраций антистафилококкового антибиотика батумина для повы­шения биосинтетической активности собственного штамма-продуцента позволило отобрать варианты с повышенной продуктивностью. Максимально активный клон Pseudomonas batumici № 9 синтезировал 60—70 мг/л батумина, что в 2 раза превышало активность наиболее продуктивного природного штамма. Однако при хранении этой культуры в неселективных условиях наблюдалась постепенная потеря активности. Хлортетрациклин, использованный для увеличения выхода батумина, обладал селективным действием, в результате чего возрастало содержание клонов с повышенной активностью
Використання високих концентрацій антистафілококового ан­тибіотика батуміну для підвищення біосинтетичної актив­ності власного штаму-продуцента дозволило відібрати ва­ріанти з підвищеною продуктивністю. Максимально активний клон Pseudomonas batumici № 9 синтезував 60—70 мг/л ба­туміну, що в 2 рази перевищувало активність найпродук­ тивнішого природного иітаму. Однак при зберіганні цієї куль­тури в неселективних умовах спостерігалася поступова втра­ та активності. Хлортетрациклину, який використовували для збільшення виходу батуміну, притаманна селективна дія, в результаті чого зростав вміст клонів з підвищеною ак­тивністю.
pplication of high concentrations of antistaphylococcal antibiotic batumin in order to increase biosynthetic activity of the own strain-producent allowed selecting variants with increased pro­ ductivity. Clone Pseudomonas batumici No. 9 with maximum activity synthesized from 60 to 70 mg of batumin per I of culture medium, which was 2 times higher than the activity of the most productive natural strain-producent However, after storage of this culture in non-selective conditions we noticed gradual decrease in the activity. Chlortetracy dine possesses only selective influence, the result of which was raise in the content of clones with the increased activity in producent's population.
ru
Інститут молекулярної біології і генетики НАН України
Біополімери і клітина
Біомедицина
Влияние индуцирующих и селективных агентов на биосинтез нового антистафилококкового антибиотика батумина
Вплив індукуючих і селективних агентів на біосинтез нового антистафілококового антибіотика батуміну
Impact of inductive and selective agents on biosynthesis of new antistaphylococcal antibiotic batumin
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Влияние индуцирующих и селективных агентов на биосинтез нового антистафилококкового антибиотика батумина
spellingShingle Влияние индуцирующих и селективных агентов на биосинтез нового антистафилококкового антибиотика батумина
Чуркина, Л.Н.
Кравец, А.Н.
Клочко, В.В.
Біомедицина
title_short Влияние индуцирующих и селективных агентов на биосинтез нового антистафилококкового антибиотика батумина
title_full Влияние индуцирующих и селективных агентов на биосинтез нового антистафилококкового антибиотика батумина
title_fullStr Влияние индуцирующих и селективных агентов на биосинтез нового антистафилококкового антибиотика батумина
title_full_unstemmed Влияние индуцирующих и селективных агентов на биосинтез нового антистафилококкового антибиотика батумина
title_sort влияние индуцирующих и селективных агентов на биосинтез нового антистафилококкового антибиотика батумина
author Чуркина, Л.Н.
Кравец, А.Н.
Клочко, В.В.
author_facet Чуркина, Л.Н.
Кравец, А.Н.
Клочко, В.В.
topic Біомедицина
topic_facet Біомедицина
publishDate 2007
language Russian
container_title Біополімери і клітина
publisher Інститут молекулярної біології і генетики НАН України
format Article
title_alt Вплив індукуючих і селективних агентів на біосинтез нового антистафілококового антибіотика батуміну
Impact of inductive and selective agents on biosynthesis of new antistaphylococcal antibiotic batumin
description Использование высоких концентраций антистафилококкового антибиотика батумина для повы­шения биосинтетической активности собственного штамма-продуцента позволило отобрать варианты с повышенной продуктивностью. Максимально активный клон Pseudomonas batumici № 9 синтезировал 60—70 мг/л батумина, что в 2 раза превышало активность наиболее продуктивного природного штамма. Однако при хранении этой культуры в неселективных условиях наблюдалась постепенная потеря активности. Хлортетрациклин, использованный для увеличения выхода батумина, обладал селективным действием, в результате чего возрастало содержание клонов с повышенной активностью Використання високих концентрацій антистафілококового ан­тибіотика батуміну для підвищення біосинтетичної актив­ності власного штаму-продуцента дозволило відібрати ва­ріанти з підвищеною продуктивністю. Максимально активний клон Pseudomonas batumici № 9 синтезував 60—70 мг/л ба­туміну, що в 2 рази перевищувало активність найпродук­ тивнішого природного иітаму. Однак при зберіганні цієї куль­тури в неселективних умовах спостерігалася поступова втра­ та активності. Хлортетрациклину, який використовували для збільшення виходу батуміну, притаманна селективна дія, в результаті чого зростав вміст клонів з підвищеною ак­тивністю. pplication of high concentrations of antistaphylococcal antibiotic batumin in order to increase biosynthetic activity of the own strain-producent allowed selecting variants with increased pro­ ductivity. Clone Pseudomonas batumici No. 9 with maximum activity synthesized from 60 to 70 mg of batumin per I of culture medium, which was 2 times higher than the activity of the most productive natural strain-producent However, after storage of this culture in non-selective conditions we noticed gradual decrease in the activity. Chlortetracy dine possesses only selective influence, the result of which was raise in the content of clones with the increased activity in producent's population.
issn 0233-7657
url https://nasplib.isofts.kiev.ua/handle/123456789/156995
citation_txt Влияние индуцирующих и селективных агентов на биосинтез нового антистафилококкового антибиотика батумина / Л.Н. Чуркина, А.Н. Кравец, В.В. Клочко // Біополімери і клітина. — 2007. — Т. 23, № 2. — С. 108-114. — Бібліогр.: 24 назв. — рос., англ.
work_keys_str_mv AT čurkinaln vliânieinduciruûŝihiselektivnyhagentovnabiosinteznovogoantistafilokokkovogoantibiotikabatumina
AT kravecan vliânieinduciruûŝihiselektivnyhagentovnabiosinteznovogoantistafilokokkovogoantibiotikabatumina
AT kločkovv vliânieinduciruûŝihiselektivnyhagentovnabiosinteznovogoantistafilokokkovogoantibiotikabatumina
AT čurkinaln vplivíndukuûčihíselektivnihagentívnabíosinteznovogoantistafílokokovogoantibíotikabatumínu
AT kravecan vplivíndukuûčihíselektivnihagentívnabíosinteznovogoantistafílokokovogoantibíotikabatumínu
AT kločkovv vplivíndukuûčihíselektivnihagentívnabíosinteznovogoantistafílokokovogoantibíotikabatumínu
AT čurkinaln impactofinductiveandselectiveagentsonbiosynthesisofnewantistaphylococcalantibioticbatumin
AT kravecan impactofinductiveandselectiveagentsonbiosynthesisofnewantistaphylococcalantibioticbatumin
AT kločkovv impactofinductiveandselectiveagentsonbiosynthesisofnewantistaphylococcalantibioticbatumin
first_indexed 2025-11-25T21:29:04Z
last_indexed 2025-11-25T21:29:04Z
_version_ 1850557757024894976
fulltext Impact of inductive and selective agents on biosynthesis of the new anti-staphylococcal antibiotic batumin L. N. Churkina, A. N. Kravets, V. V. Klochko Institute of microbiology and virology, NAS of Ukraine 154, Acad. Zabolotny Str., Kyiv, 03143, Ukraine churkina@imv.kiev.ua Application of high concentrations of antistaphylococcal antibiotic batumin in order to increase biosynthetic activity of the own antibiotic producing strain allowed selecting variants with increased productivity. Clone Pseudomonas batumic No.9 with maximum activity synthesized from 60 to 70 mg of batumin per l of culture medium, which was 2 times higher than the activity of the most productive natural producing strain However, after storage of this culture in non-selective conditions we noticed gradual decrease in the activity. Chlortetracyclin possesses only selective influence, the result of which was raise in the content of clones with the increased activity in producing strain population. Key words: batumin, chlortetracycline, antibiotic producing strain, S. aureus Introduction. Antibiotic batumin had been isolated from the “Pseudomonas batumic” in the Institute of Microbiology and Virology of National Academy of Sciences of Ukraine. Chemical structure of batumin was shown to be (2E, 10Z, 12E)-20-(3- aminocarboxy-2-methyl-1-oxybutyl)-amino-7-methyl ene-17-oxo-19-oxy-3,5,15-trimethyl-eicosa-2,10,12-tr ienoic acid [1]. Due to its unique chemical structure, batumin can be considered as new antimicrobial compound with no analogues among commonly used antibiotics. Batumin has unique and selective activity against all investigated types of staphylococci [2, 3], and is considered to be a highly effective therapeutic agent for the treatment of nasal staphylococcus carriage [4, 5]. The diagnostic preparation "Diastaph" (batumin impregnated disks) ensures quick and reliable identification of microorganisms of genus Staphylococcus [6]. The disks may be successfully used when providing regular hospital examination on nasal carriage of staphylococci. There are enough evidences to consider batumin as a promising therapeutic agent against hospital staphylococcal infections – one of the most urgent and yet not solved problems of modern medicine. Some disadvantages of natural antibiotic producing strain, is a low level of antibiotic biosynthesis (20–25 mg/l), which creates serious obstacles on the way to its industrial production. The use of antibiotics as selective and inducing agents allowed obtaining some practically important results. Thus, highly active mutants of ristomycin, chlortetracycline, and imbricin producing strains were selected under the influence of antibiotics on producing cultures of actinomyces [9–12]. The goal of current work was to investigate the specificities of batumin and chlortetracycline effects on 108 ISSN 0233-7657. Biopolymers and cell. 2007. Vol. 23. ISS 2. Translated from Ukrainia BIOMEDICINE ã L. N. CHURKINA, A. N. KRAVETS, V. V. KLOCHKO, 2007 biosynthetic activity of antibiotic producing strain with the purpose of increasing of its productivity. Materials and Methods. The strain "P. batumici" 109 with increased biosynthetic activity has been used throughout the study [7]. It is a derivative of wild strain "P. batumici" B-303, selected among the clones during passages of the parental strain. Batumin and tetracycline resistant variants of "P. batumici" 109 were obtained using the method of step-wise selection with increasing antibiotics concentration. The agar-containing media was supplemented with batumin and chlortetracycline dissolved in water. Minimal inhibiting concentration (MIC) of batumin and chlortetracycline for "P. batumici" 109 were 200 ìg/ml and 0.2 ìg/ml, respectively. "P. batumici" 109 and batumin-resistant variants No.4 and No.9 and chlortetracycline-resistant variants No, 28, 53, and 80 were kept in non-selective conditions layered with mineral oil on 0.5% of MPA. To study the changes in antibiotic production, all "P. batumici" variants were inoculated at the density of 1C107 cells per ml into 150 ml of synthetic growth media The cultivation was performed using a shaker (220 rpm) in Erlenmeyer flasks (750 ml) at the following conditions: 150 ml of nutrition medium, initial concentration of cells was 1C107 cells per ml, T = 25°C, cultivation time – 72 hours. Biosynthetic activity of "P. batumici" clones was assessed using the worked-out method on MPA with the replicator, calculating for 5 clones per cup, using batumin-highly sensitive test-culture of Staphylococcus aureus 209 P (UKM B-918, ATCC 6538P), i.e. using the method of batumin diffusion into agar. Based on the diameter of zone of growth inhibition of test Staphylococcus aureus 209 P, clones were sub-divided as low-active – with 5–20 mm zone of inhibition, active – 20–30 mm, with increased activity – 30–40 mm, and highly active – 40–60 mm. Quantitative concentrations of antibiotic in cultural medium were determined by spectrophotometry. Cultural medium was extracted by chloroform. Obtained extract was steamed in vacuum-steamer at 40–45°C with the following purification using the method of thin-layer chromatography. Batumin containing sorbent was removed from chromatographic plate and eluted with alcohol. Batumin concentration in the solution obtained was determined using the method of spectrophotometry and calculated according to the following formula [8]: C D P E = * * % 104 1 where: C – batumin concentration, mg/l; D – optical density of the batumin solution at l = 225 nm; P – total dilution of the sample; E1% – extinction coefficient of 1% batumin solution (E1% = 584); 104 – concentration recalculation coefficient per 1 l of cultural medium. Results and Discussion. The possibility of increasing batumin synthesis using the target product in selection was studied at the first stage of our work. Using the method of stepwise selection, the variants of “P. batumici” 109 resistant to different batumin concentrations (400, 800, 1200, and 2000 mkg/ml) were obtained, which was necessary in order to analyse the dependence of their productivity on the level of resistance to own antibiotic. According to hypothesis there was a direct correlation between the productive cell and the ability to grow on higher antibiotic concentrations, thus, the most productive cells would grow on the highest concentrations. It was found that the rate of bacterial survival decreased along the concentration increase from 200 to up to 2000 mkg/ml. Single clones with the level survival of 0.05% were formed at the concentration of 2000 mkg/ml. Batumin-resistant colonies were different from corresponding batumin-sensitive colonies by a number of morphological characteristics, namely, they were rough, of smaller size, and some of them were mucous. Next, 1359 clones were selected for further experiments. The analysis of "P. batumici" 109 clones for synthesis of antibiotics revealed uneven level of antibiotic biosynthesis by some cells. The populations were dominatd by active clones (46.7±3.1%) and the clones with increased activity (52.1±3.4%). Batumin-resistant variants demonstrated dependency between the level of specific activity and the level of antibiotic resistance. The increase in batumin resistance level was followed by the increased number of clones with increased activity and highly active clones as well (Fig.1). It is noteworthy that within the concentration 109 IMPACT OF INDUCTIVE AND SELECTIVE AGENTS ON BIOSYNTHESIS range from 1200 to 2000 mkg/ml, active variants had been replaced by highly active clones. It has been assumed that the variants with the highest batumin-resistance have to be of increased biosynthetic activity. The search for maximally active variants was performed among 453 highly active clones, obtained in five independent experiments and different in the level of resistance to antibiotic. The largest growth inhibition zones of S. aureus 209P (47 and 58 mm) had been given by two clones, No.4 and No.9, with the level of resistance 2000 mkg/ml (Fig.2). These clones were synthesised at the level of 52–58 and 65–70 mg/l of antibiotic, respectively. Therefore, comparing to the parental strain of "P. batumici" (batumin output 31.4±1.9 mg/l), the selected variants of"P. batumici" No.4 and No.9 had average 2–2.5 times increase in the yield of antibiotic. As the stability of level of antibiotic synthesis is of great practical importance, we have investigated the stability of variant No.9 after storing for 20 and 60 days. When the stocks were plated to obtained independent clones, it was found that the significant variations of specific activities in their populations. of batumin-resistant highly-active clone No.9 to single clones revealed their significant activity-wise distribution. Thus, after 20 days the clones with increased activity (71±2.5%) and highly-active ones (29±1.4%) dominated, while after 60 days this ratio had been changed, and the clones with increased activity (53.7±2.1) and active clones ( 43.5±1.9%) began to prevail in population dominant with diminishing of highly-active clones to 2.8±0.004% (Fig.3). These ratios were observed on storing of the clones on batumin-free medium, i.e. gradual decrease in activity was observed in the course of storing. The culture achieved its initial state and synthesised 35-40 mg/l of batumin. Similar situation was observed when investigating the stability of variant No.4. The experiments performed show that batumin may be used for increasing the biosynthetic activity of antibiotic producing strain of its own. However, it is worth mentioning that obtained highly-active clones are characterized by relative stability and, therefore, can be used for obtaining of antibiotic at the laboratory conditions only. Taking into account the information on successful application of other types of antibiotics in order to increase the level of target product output, we decided to study the influence of chlortetracycline on batumin synthesis. Tetracyclines belong to the class of antibiotics which inhibit protein synthesis by means of modification of proteins of translational apparatus of target cell [13, 14], and batumin belongs to membrane-acting antibiotics [15, 16], therefore, the manner of action of these antibiotics on antibiotic producing strain cells will be different. “P. batumici” 109 variants, resistant to different concentrations of chlortetracycline (2, 20, 40 mkg/ml) were obtained using the method of step-wise selection. Preliminary experiments were dedicated to the study of survivability of "P. batumici" 109 cells depending on the level of resistance. As it has been supposed, increase in resistance of chlortetracycline resulted in significant decrease in survivability of producing strain 110 CHURKINA L. N., KRAVETS A. N., KLOCHKO V. V. Fig.1 Variability of activity degree of “P. batumici” 109 clones, induced with batumin: 1 – low active; 2 – active; 3 – increased activity; 4 – highly-active (a – before selection, b – after selection) 111 IMPACT OF INDUCTIVE AND SELECTIVE AGENTS ON BIOSYNTHESIS Fig.2 The growth inhibition zones of test-culture S. aureus 209P: a – “P. batumici” 109; b, c – batumin resistant variants of clones No.4 and No.9 with increased level of antibiotic biosynthesis Fig.3 Distribution of clones according to their activity of batumin-resistant variant of "P. batumici" No.9 at storing: 1 – low active; 2 – active; 3 – increased activity; 4 – highly-active cells. At the concentration of antibiotics of 2 ìkg/ml, the number of survived bacteria amounted to 8%, and at the concentration of 20 and 40 mkg/ml, 0.8% and 0.05% of bacteria survived, respectively. The results of investigation of correlation of antibiotic producing strain clones according to the degree of their activity at the interaction with chlortetracycline showed significant increase in population of clones with increased activity and decrease in number of active clones. Meanwhile, in the population of "P. batumici", highly-active clones were not detected (Table). Further research was to study the influence of maximally active clones according to batumin synthesis among the clones with increased activity and the level of survivability of 0.8 and 0.05%. 760 clones of resistant to chlortetracycline variants (20 and 40 ìkg/ml) were selected for further research. Differential analysis of clones according to batumin synthesis allowed detecting three clones – No.28, 53 and 80 with diameter of zone of growth inhibition S. aureus 209 P, 39, 35, and 37 mm, respectively, in comparison with 30 mm of "P. batumici" 109. The productivity of these clones was 35–40 mg/l of batumin, which did not exceed significantly biosynthetic activity of "P. batumici" 109. Although among chlortetracycline-resistant variants of "P. batumici" 109 we did not reveal the clones with increased biosynthetic activity, antibiotic possessed certain selective activity, which consisted in purifying natural population from low active and active clones. Antibiotics are often referred to as cytotoxic metabolites for bacteria that produce them. The resistance of many antibiotic producing strain towards them is determined by energy-dependent efflux systems, which carry toxic products out of the cell [17–20]. It is worth mentioning that the increase in activity of such systems may cause the increase in antibiotic output. In particular, it has been demonstrated for 6-dimethylchlortetracycline [21], surfactin and pliplastin [22], fenarimol and penicillin [23], cephalosporin C [24]. To our mind, the increase in antibiotic output at selective passages of culture on the media with increased batumin concentrations is determined by its more active removal out of the cell, which is the main mechanism of producing strain detoxication for its toxic product. It is also possible that the synthesis of antibiotic increases in accordance to the feedback mechanism, but the solution to this problem is far beyond the framework of this work. Positive chlortetracycline effect may be due to the selection of cells with highly-active efflux pumps. It is possible that "P. batumici" uses a special pump for batumin removal, which is in good correlation with different effects of batumin and chlortetracycline presence in growth medium. Therefore, having investigated the effect of batumin and chlortetracycline on biosynthetic activity of antibiotic producing strain, it has been shown that batumin initiates the appearance of highly-active clones with increased productivity in "P. batumici" 109 population, while chlortetracycline is specific for its 112 CHURKINA L. N., KRAVETS A. N., KLOCHKO V. V. Table The percentage distribution of specific activity among individual clones in population of "P. batumici" 109 after chlortetracycline effect Chlortetracycline concentration, ìg/ml The number of clones reviewed Content of clones in population, % Low active Active Increased activity Control 105 1.2±0.06 46.7±2.8 52.1±3.1 2 122 0 47.5±2.9 52.5±3.0 20 125 0 24.7±1.5 75.3±4.1 40 118 0 10.8±0.9 89.2±5.0 selective activity only, as a result of which the number of clones with increased activity increases. Conclusions. For the first time, the possibility of increasing the synthesis, using the selection of the target product, has been shown for producing strain of anti-staphylococcal antibiotic batumin. The use of batumin in selection of antibiotic producing strain allowed obtaining a relatively stable producing strain with batumin output more than 2-fold increased. During selection of antibiotic producing strain with chlortetracycline, highly-active clones have not been detected, however, the effect of this antibiotic in population of producing strain population revealed the decrease in the number of low active and active clones and the increase in the number of clones with increased activity. Chlortetracycline was shown to be of selective activity, purifying natural population from low active and active clones. Ë. Í. ×óð êè íà, À. Í. Êðà âåö, Â. Â. Êëî÷ êî Âëè ÿ íèå èí äó öè ðó þ ùèõ è ñå ëåê òèâ íûõ àãåí òîâ íà áè î ñèí òåç íî âî ãî àí òèñ òà ôè ëî êîê êî âî ãî àí òè áè î òè êà áà òó ìè íà Ðå çþ ìå Èñïîëü çî âà íèå âû ñî êèõ êîí öåí òðà öèé àí òèñ òà ôè ëî êîê êî âî ãî àí òè - áè î òè êà áà òó ìè íà äëÿ ïî âû øå íèÿ áè î ñèí òå òè ÷åñ êîé àê òèâ íîñ òè ñî - áñòâåí íî ãî øòàì ìà-ïðî äó öåí òà ïî çâî ëè ëî îòî áðàòü âà ðè àí òû ñ ïî âû øåí íîé ïðî äóê òèâ íîñ òüþ. Ìàê ñè ìàëü íî àê òèâ íûé êëîí Pseudomonas batumici ¹9 ñèí òå çè ðî âàë 60—70 ìã/ë áà òó ìè íà, ÷òî â 2 ðàçà ïðå âû øà ëî àê òèâ íîñòü íà è áî ëåå ïðî äóê òèâ íî ãî ïðè ðîä íî ãî øòàì ìà. Îäíà êî ïðè õðà íå íèè ýòîé êóëü òó ðû â íå ñå ëåê òèâ íûõ óñëî - âè ÿõ íà áëþ äà ëàñü ïî ñòå ïåí íàÿ ïî òå ðÿ àê òèâ íîñ òè. Õëîð òåò ðà öèê - ëèí, èñ ïîëü çî âàí íûé äëÿ óâå ëè ÷å íèÿ âû õî äà áà òó ìè íà, îá ëà äàë ñå ëåê òèâ íûì äå éñòâè åì, â ðå çóëü òà òå ÷åãî âîç ðàñ òà ëî ñî äåð æà íèå êëî íîâ ñ ïî âû øåí íîé àê òèâ íîñ òüþ. Êëþ ÷å âûå ñëî âà: áà òó ìèí, õëîð òåò ðà öèê ëèí, øòàìì-ïðî äó öåíò, Staphylococcus aureus. REFERENCES: 1.Esipov S. E., Kiprianova E. A. Batumin, a novel antibiotic produce by Pseudomonas batumici nov. sp. 3187 // 5th Int. Conf. on Chemical Synthesis of Antibiotics and Related Microbial Products: Abstr.—Budapest: Hung. Acad. Sci. publ., 1996.—P. 14. 2.Ñìiðíîâ Â. Â., ×ó ðêiíà Ë. Ì., Íî ñåí êî Ã. À., Áiäíåí êî Ñ. I., Àðòèñþê Î.I., Ïóñ òî âà ëî âà Ë. I., Êiïðià íî âà Î. À., Ãà ðà ãó ëÿ Î. Ä. Åôåê òèâíiñòü äiàã íîñ òè÷ íèõ äèñ êiâ ç áà òóì iíîì ïðè iäåí òèô - iêàöi¿ òà iíäè êàöi¿ ñòàô iëî êîêiâ // Ëiêà ðñüêà ñïðà âà.—2002.—¹ 5—6.—Ñ. 27—31. 3.Witte W., Cuny C., Mollmann W. U. In vitro — Wirksamkeit von Batumin auf Staphylococcus aureus // Chemother. J.—1997.—6.—P. 48—50. 4.Smirnov V. V., Churkina L. N., Kiprianova E. A. Antibiotic batumin for diagnostics of staphylococci and treatment of Staphylococcus aureus nasal carriage Poster presentation // 10th Int. Symp. on Staphylococci and Staphylococcal infections: Abstr.— Tsukuba, 2002.—P. 130. 5.Ñìèð íîâ Â. Â., Êèï ðè à íî âà Å. À., ×óð êè íà Ë. Í. Àíòèáèîòèê áà òó - ìèí â áîðü áå ñ ãîñ ïè òàëü íîé ñòà ôè ëî êîê êî âîé èí ôåê öè åé // Ìåæ äó íàð. íàó÷. êîíô. «Àêòóàëüíûå âîï ðî ñû áîðü áû ñ èí ôåê - öè îí íû ìè áî ëåç íÿ ìè».—Õàðü êîâ, 2003.—Ñ. 152. 6.Ñìèð íîâ Â. Â., Êèï ðè à íî âà Å. À., Ãâîç äÿê Î. Ð., Ãà ðà ãó ëÿ À. Ä., ×óð êè íà Ë. Í., Ïðîñ êó ðÿ êî âà Í. Á., Õàð ÷åí êî Ë. À. Èñïîëü çî âà - íèå äèñ êîâ ñ áà òó ìè íîì äëÿ ýêñ ïðåññ-èäåí òè ôè êà öèè ñòà ôè ëî - êîê êîâ // Æóðí. ìèê ðî áè î ëî ãèè, ýïè äå ìè î ëî ãèè è èì ìó íî ëî - ãèè.—1999.—¹ 5.—Ñ. 77—80. 7.Ñìèð íîâ Â. Â., ×óð êè íà Ë. Í., Êðà âåö À. Í., Ãà ðà ãó ëÿ À. Ä. Íå êî - òî ðûå îñî áåí íîñ òè áè î ñèí òå çà íî âî ãî àí òèñ òà ôè ëî êîê êî âî ãî àí òè áè î òè êà áà òó ìè íà // Àíòèáèîòèêè è õè ìè î òå ðà - ïèÿ.—1993.—38, ¹ 4—5.—Ñ. 3—5. 8.Ñìèð íîâ Â. Â., ×óð êè íà Ë. Í., Ïå ðåï íû õàò êà Â. È., Ìóê âè÷ Í. Ñ., Ãà ðà ãó ëÿ À. Ä., Êèï ðè à íî âà Å. À., Êðà âåö À. Í., Äîâ æåí êî Ñ. À. Ïî ëó ÷å íèå âû ñî êî àê òèâ íî ãî øòàì ìà—ïðî äó öåí òà àí òèñ òà ôè - ëî êîê êî âî ãî àí òè áè î òè êà áà òó ìè íà // Ïðèêë. áè î õè ìèÿ è ìèê ðî - áè î ëî ãèÿ.—2000.—36, ¹ 1.—Ñ. 55—58. 9.Òðå íè íà Ã. À., Òðóò íå âà Å. Ì. Èñïîëü çî âà íèå ðèñ òî ìè öè íà ïðè ñå ëåê öèè àê òèâ íûõ âà ðè àí òîâ Proactinomyces Fructiferi var. Ristomycini // Àíòèáèîòèêè.—1966.—¹ 9.—Ñ. 770—774. 10.Âå ñå ëî âà Ñ. È. Ñðàâ íè òåëü íîå èç ó÷å íèå ëå òàëü íî ãî, ñå ëåê òèâ íî - ãî è ìó òà ãåí íî ãî äå éñòâèÿ õëîð òåò ðà öèê ëè íà, îêñè òåò ðà öèê ëè - íà è ñòðåï òî ìè öè íà íà Actinomyces aureofaciens è Actinomyces rimosus. 1. Ëå òàëü íîå è ñå ëåê òèâ íîå äå éñòâèå õëîð òåò ðà öèê ëè - íà, îêñè òåò ðà öèê ëè íà íà Actinomyces aureofaciens è Actinomyces rimosus // Ãå íå òè êà.—1967.—¹ 12.—Ñ. 73—79. 11.Hotta K., Takamura S. Visualization of potential antibiotic productivity of actinomycetes: Effect of antibiotics, amino acid analogues and shifp-down // ISBA’94: Int. Symp. Biol. Actinomycet.—Moscow, 1994.—P. 168. 12.Ãîð áó íî âà Í. À., ßêîâ ëå âà Å. Ï. Äå éñòâèå ñî áñòâåí íî ãî àí òè áè î - òè êà íà ïðî äó öåíò èì áðè öè íà ïðè âû ðà ùè âà íèè íà àãà ðè çî âàí - íîé ñðå äå // Àíòèáèîòèêè è õè ìè î òå ðà ïèÿ.—2000.—45, ¹ 5.—Ñ. 6—8. 13.Schnappinger D, Hillen W. Tetracyclines: antibiotic action, uptake, and resistance mechanisms // Arch. Microbiol.—1996.—165.—P. 359—369. 14.Brodersen D. E., Clemons W. M. Jr., Carter A. P., Warren R. J., Wimberly B. T., Ramakrishnan V. The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit // Cell.—2000.—103.—P. 1143—1154. 15.Ñìèð íîâ Â. Â., Âà ñþ ðåí êî Ç. Ï., ×óð êè íà Ë. Í. Ëè ïè äû // Ñòà ôè - ëî êîê êè.—Êèåâ: Íàóê. äóì êà, 1988.—Ñ. 34—65. 16.Ñìèð íîâ Â. Â., ×óð êè íà Ë. Í., Âà ñþ ðåí êî Ç. Ï. Èíäóê öèÿ àí òè áè - î òè êîì ÀË-87 èç ìå íå íèé â æèð íî-êèñ ëîò íîì ñî ñòà âå ôîñ ôî ëè - ïè äîâ è íå é òðàëü íûõ ëè ïè äîâ ÷ó âñòâè òåëü íî ãî ê íåìó øòàì ìà Staphylococcus aureus 209P // Àíòèáèîòèêè è õè ìè î òå ðà - ïèÿ.—1988.—33, ¹ 6.—Ñ. 440—443. 17.Ñundliffe E. How antibiotic-producing organisms avoid sucide // Annu. Rev. Micobiol.—1989.—43.—P. 207—233. 18.Ma Y., Patel J., Parry R. J. A novel valanimycin-resistance determinant (vlmF) from Sreptomyces viridifaciens MG456-hF10 // Microbiology.—2000.—146.—P. 345—352. 19.Ryan B. M., Dougherty T. J., Beaulieu D., Chuang J., Dougherty B. A., Barrett J. F. Efflux in bacteria: what do we really know about it? // Expert Opin Invest. Drugs.—2001.—10.—P. 1409—1422. 20.Skatrud P. L. The impact of multiple drug resistance (MDR) proteins on chemotherapy and drug discovery // Prog. Drug. Res.—2002.—58.—P. 99—131. 21.Dairi T., Aisaka K., Katsumata R., Hasegawa M. A self-defence gene homologous to tetracycline effluxing gene essential for antibiotic 113 IMPACT OF INDUCTIVE AND SELECTIVE AGENTS ON BIOSYNTHESIS production in Sreptomyces aureofaciens // Biosci. Biotechnol. Biochem.—1995.—59.—P. 1835—1841. 22.Turner M. S., Helmann J. D. Mutations in multidrug efflux homologs, sugar isomerases, and antimicrobial biosynthesis genes differentially elevate activity of the sigmaX and sigmaW factors in Bacillus subtilis // J. Bacteriol.—2000.—182.—P. 5202—5210. 23.Andrade A. C., Van Nistelrooy J. G., Peery R. B., Skatrud P. L., De Waard M. A. The role of ABC transporters from Aspergillus nidulans in protection against cytotoxic agents and in antibiotic production // Mol. and Gen. Genet.—2000.—263.—P. 966—977. 24.Ullan R.V., Liu G.,Casqueiro J.,Gutierrez S., Banuelos O.,Martin J.F. The cefT gene of Acremonium chrysogenum C10 encodes a putative multidrug efflux pump protein that significantly increases cephalosporin C production // Mol. Genet. Genom.—2002.—267.—P. 673—683. ÓÄÊ 615.33.015.4:579.861.2.07 Íàäiéøëà äî ðå äàêöi¿ 02.11.06 114 CHURKINA L. N., KRAVETS A. N., KLOCHKO V. V.