Convergence rates and finite-dimensional approximation for a class of ill-posed variational inequalities

The purpose of this paper is to investigate an operator version of Tikhonov regularization for a class of ill-posed variational inequalities under arbitrary perturbation operators. Aspects of convergence rate and finite-dimensional approximations are considered. An example in the theory of generaliz...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Український математичний журнал
Дата:1997
Автор: Nguyen Buong
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 1997
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/157064
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Convergence rates and finite-dimensional approximation for a class of ill-posed variational inequalities / Nguyen Buong // Український математичний журнал. — 1997. — Т. 49, № 5. — С. 629–637. — Бібліогр.: 14 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-157064
record_format dspace
spelling Nguyen Buong
2019-06-19T13:48:00Z
2019-06-19T13:48:00Z
1997
Convergence rates and finite-dimensional approximation for a class of ill-posed variational inequalities / Nguyen Buong // Український математичний журнал. — 1997. — Т. 49, № 5. — С. 629–637. — Бібліогр.: 14 назв. — англ.
1027-3190
https://nasplib.isofts.kiev.ua/handle/123456789/157064
517.51
The purpose of this paper is to investigate an operator version of Tikhonov regularization for a class of ill-posed variational inequalities under arbitrary perturbation operators. Aspects of convergence rate and finite-dimensional approximations are considered. An example in the theory of generalized eigenvectors is given for illustration.
en
Інститут математики НАН України
Український математичний журнал
Статті
Convergence rates and finite-dimensional approximation for a class of ill-posed variational inequalities
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Convergence rates and finite-dimensional approximation for a class of ill-posed variational inequalities
spellingShingle Convergence rates and finite-dimensional approximation for a class of ill-posed variational inequalities
Nguyen Buong
Статті
title_short Convergence rates and finite-dimensional approximation for a class of ill-posed variational inequalities
title_full Convergence rates and finite-dimensional approximation for a class of ill-posed variational inequalities
title_fullStr Convergence rates and finite-dimensional approximation for a class of ill-posed variational inequalities
title_full_unstemmed Convergence rates and finite-dimensional approximation for a class of ill-posed variational inequalities
title_sort convergence rates and finite-dimensional approximation for a class of ill-posed variational inequalities
author Nguyen Buong
author_facet Nguyen Buong
topic Статті
topic_facet Статті
publishDate 1997
language English
container_title Український математичний журнал
publisher Інститут математики НАН України
format Article
description The purpose of this paper is to investigate an operator version of Tikhonov regularization for a class of ill-posed variational inequalities under arbitrary perturbation operators. Aspects of convergence rate and finite-dimensional approximations are considered. An example in the theory of generalized eigenvectors is given for illustration.
issn 1027-3190
url https://nasplib.isofts.kiev.ua/handle/123456789/157064
citation_txt Convergence rates and finite-dimensional approximation for a class of ill-posed variational inequalities / Nguyen Buong // Український математичний журнал. — 1997. — Т. 49, № 5. — С. 629–637. — Бібліогр.: 14 назв. — англ.
work_keys_str_mv AT nguyenbuong convergenceratesandfinitedimensionalapproximationforaclassofillposedvariationalinequalities
first_indexed 2025-11-29T03:48:39Z
last_indexed 2025-11-29T03:48:39Z
_version_ 1850854468738875392