Calculating spherical harmonics without derivatives

The derivation of spherical harmonics is the same in nearly every quantum mechanics textbook and classroom. It is found to be difficult to follow, hard to understand, and challenging to reproduce by most students. In this work, we show how one can determine spherical harmonics in a more natural...

Full description

Saved in:
Bibliographic Details
Published in:Condensed Matter Physics
Date:2018
Main Authors: Weitzman, M., Freericks, J.K.
Format: Article
Language:English
Published: Інститут фізики конденсованих систем НАН України 2018
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/157084
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Calculating spherical harmonics without derivatives / M. Weitzman, J.K. Freericks // Condensed Matter Physics. — 2018. — Т. 21, № 3. — С. 33002: 1–12. — Бібліогр.: 21 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:The derivation of spherical harmonics is the same in nearly every quantum mechanics textbook and classroom. It is found to be difficult to follow, hard to understand, and challenging to reproduce by most students. In this work, we show how one can determine spherical harmonics in a more natural way based on operators and a powerful identity called the exponential disentangling operator identity (known in quantum optics, but little used elsewhere). This new strategy follows naturally after one has introduced Dirac notation, computed the angular momentum algebra, and determined the action of the angular momentum raising and lowering operators on the simultaneous angular momentum eigenstates. Спосiб отримання сферичних гармонiк приводиться однаково майже в кожному пiдручнику чи на кожному заняттi з квантової механiки. Як виявляється, його трудно вслiдкувати, важко зрозумiти й складно вiдтворити бiльшостi студентiв. В цiй роботi нами показано як обчислити сферичнi гармонiки природнiшим способом з допомогою операторiв та дивовижної тотожностi, вiдомої як тотожнiсть експоненцiйного розплутування операторiв (знаної в квантовiй оптицi, але мало застосовної десь iнакше). Цей новий пiдхiд виникає природнiм чином пiсля введення дiракових позначень, встановлення алгебри оператора кутового моменту та визначення дiї операторiв збiльшення та зменшення кутового моменту на спiльний базис власних функцiй.
ISSN:1607-324X