A new stress-based multiaxial high-cycle fatigue damage criterion
A new stress-based high-cycle fatigue damage criterion for multiaxial load cases, D = αDσβDτγ is presented. This criterion is based on a critical plane approach that the damage parameter is a function of normal stress amplitude and shear stress amplitude on critical plane of maximum shear stress ran...
Збережено в:
| Опубліковано в: : | Functional Materials |
|---|---|
| Дата: | 2018 |
| Автори: | , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
НТК «Інститут монокристалів» НАН України
2018
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/157131 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | A new stress-based multiaxial high-cycle fatigue damage criterion / Xin Li, Jianwei Yang, Dechen Yao // Functional Materials. — 2018. — Т. 25, № 2. — С. 406-411. — Бібліогр.: 18 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-157131 |
|---|---|
| record_format |
dspace |
| spelling |
Xin Li Jianwei Yang Dechen Yao 2019-06-19T16:17:25Z 2019-06-19T16:17:25Z 2018 A new stress-based multiaxial high-cycle fatigue damage criterion / Xin Li, Jianwei Yang, Dechen Yao // Functional Materials. — 2018. — Т. 25, № 2. — С. 406-411. — Бібліогр.: 18 назв. — англ. 1027-5495 DOI:https://doi.org/10.15407/fm25.02.406 https://nasplib.isofts.kiev.ua/handle/123456789/157131 A new stress-based high-cycle fatigue damage criterion for multiaxial load cases, D = αDσβDτγ is presented. This criterion is based on a critical plane approach that the damage parameter is a function of normal stress amplitude and shear stress amplitude on critical plane of maximum shear stress range. The coefficient α, β and γ in the damage function are material parameters. Tensions with torsion test data are required to ascertain these coefficients. This criterion matches the test results well and shows accurate predictions of fatigue failure life compared to some present methods. en НТК «Інститут монокристалів» НАН України Functional Materials Methods and devices A new stress-based multiaxial high-cycle fatigue damage criterion Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
A new stress-based multiaxial high-cycle fatigue damage criterion |
| spellingShingle |
A new stress-based multiaxial high-cycle fatigue damage criterion Xin Li Jianwei Yang Dechen Yao Methods and devices |
| title_short |
A new stress-based multiaxial high-cycle fatigue damage criterion |
| title_full |
A new stress-based multiaxial high-cycle fatigue damage criterion |
| title_fullStr |
A new stress-based multiaxial high-cycle fatigue damage criterion |
| title_full_unstemmed |
A new stress-based multiaxial high-cycle fatigue damage criterion |
| title_sort |
new stress-based multiaxial high-cycle fatigue damage criterion |
| author |
Xin Li Jianwei Yang Dechen Yao |
| author_facet |
Xin Li Jianwei Yang Dechen Yao |
| topic |
Methods and devices |
| topic_facet |
Methods and devices |
| publishDate |
2018 |
| language |
English |
| container_title |
Functional Materials |
| publisher |
НТК «Інститут монокристалів» НАН України |
| format |
Article |
| description |
A new stress-based high-cycle fatigue damage criterion for multiaxial load cases, D = αDσβDτγ is presented. This criterion is based on a critical plane approach that the damage parameter is a function of normal stress amplitude and shear stress amplitude on critical plane of maximum shear stress range. The coefficient α, β and γ in the damage function are material parameters. Tensions with torsion test data are required to ascertain these coefficients. This criterion matches the test results well and shows accurate predictions of fatigue failure life compared to some present methods.
|
| issn |
1027-5495 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/157131 |
| citation_txt |
A new stress-based multiaxial high-cycle fatigue damage criterion / Xin Li, Jianwei Yang, Dechen Yao // Functional Materials. — 2018. — Т. 25, № 2. — С. 406-411. — Бібліогр.: 18 назв. — англ. |
| work_keys_str_mv |
AT xinli anewstressbasedmultiaxialhighcyclefatiguedamagecriterion AT jianweiyang anewstressbasedmultiaxialhighcyclefatiguedamagecriterion AT dechenyao anewstressbasedmultiaxialhighcyclefatiguedamagecriterion AT xinli newstressbasedmultiaxialhighcyclefatiguedamagecriterion AT jianweiyang newstressbasedmultiaxialhighcyclefatiguedamagecriterion AT dechenyao newstressbasedmultiaxialhighcyclefatiguedamagecriterion |
| first_indexed |
2025-11-25T20:40:42Z |
| last_indexed |
2025-11-25T20:40:42Z |
| _version_ |
1850531160628658176 |
| fulltext |
406 Functional materials, 25, 2, 2018
ISSN 1027-5495. Functional Materials, 25, No.2 (2018), p. 406-411
doi:https://doi.org/10.15407/fm25.02.406 © 2018 — STC “Institute for Single Crystals”
A new stress-based multiaxial high-cycle fatigue
damage criterion
Xin Li1, Jianwei Yang2, Dechen Yao2
1 School of Mechanical-electronic and Automobile Engineering, Beijing
University of Civil Engineering and Architecture, Beijing 100044, China
2 Beijing Key Laboratory of Performance Guarantee on Urban Rail Transit
Vehicles, School of Machine-electricity and Automobile Engineering,
Beijing University of Civil Engineering and Architecture
Received February 2, 2018
A new stress-based high-cycle fatigue damage criterion for multiaxial load cases, D = aDσ
bDτ
g
is presented. This criterion is based on a critical plane approach that the damage parameter is
a function of normal stress amplitude and shear stress amplitude on critical plane of maximum
shear stress range. The coefficient a, b and g in the damage function are material parameters.
Tensions with torsion test data are required to ascertain these coefficients. This criterion match-
es the test results well and shows accurate predictions of fatigue failure life compared to some
present methods.
Keywords: Multiaxial high-cycle fatigue; critical plane; stress-based fatigue analysis.
Предложен новый критерий определения повреждения материалов за счет напряжений,
возникающих при многоциклической нагрузке D = aDσ
bDτ
g. Этот критерий основан на
приближении, что параметр повреждения является функцией нормальной амплитуды
напряжения и амплитуды сдвигового напряжения. Коэффициенты a, b и g в функции
повреждения являются экспериментальными параметрами. Для определения этих
коэффициентов используется напряженность, возникающая при испытаниях на кручение.
Этот критерий хорошо соответствует результатам испытаний и показывает более точные
прогнозы усталостных отказов по сравнению с некоторыми существующими современными
методами.
Новий метод визначення втоми матеріалів, заснований на багатоціклічному
навантаженні. Xin Li, Jianwei Yangb, Dechen Yaoc
Запропоновано новий критерій визначення пошкодження матеріалів за рахунок напружень,
що виникають при багатоциклічному навантаженні D = aDσ
bDτ
g. Цей критерій заснований
на наближенні, що параметр пошкодження є функцією нормальної амплітуди напруги і
амплітуди сдвигової напруги. Коефіцієнти a, b і g у функції ушкодження є експериментальними
параметрами. Для визначення цих коефіцієнтів використовується напруженість, що виникає
при випробуваннях на крутіння. Цей критерій добре відповідає результатам випробувань і
показує більш точні прогнози втомних відмов у порівнянні з деякими існуючими сучасними
методами.
1. Introduction
Almost every mechanical component is sub-
jected to multiaxial loadings. How to predict
the life of these mechanical parts is a key fac-
tor for designers. Early fatigue researchers use
equivalent stress, such as Von Mises criterion
or Tresca criterion, to put forward their fatigue
life prediction criterions, which are essentially
extension of static yield criteria [1]. The aim of
these methods is reducing the multiaxial stress
components to an equivalent uniaxial stress,
Functional materials, 25, 2 2018 407
Xin Li et al. / A new stress-based multiaxial ...
expecting to transfor the multiaxial fatigue to
a simple uniaxial fatigue problem. However,
a difficulty of this type of procedure is defini-
tion of a mean stress, whose meaning is unclear
within multiaxial stress conditions. In present,
it is believed that the critical plane method is
an efficient way of fatigue life prediction, for
it has a clearer physical meaning than other
fatigue life prediction methods. Many critical
plane methods have been proposed to assist
in the mechanical design [2]. A typical criti-
cal plane criterion is proposed by Findley [3].
He uses a linear combination of normal stress
and shear stress in the critical plane as a mean
stress. A similar concept depends on the test of
proportional combination of cyclic bending and
torsion was proposed by Stulen and Cummings
[4]. McDiarmid [5] pointed out that the impor-
tant factors of high cycle fatigue (HCF) are the
maximum shear stress range and the normal
stress in the critical plane of the maximum
shear stress amplitude. Rashed et al. [6] pro-
pose a stress-strain criterion in consideration
of the nonproportional multiaxial loading con-
dition. Chen et al [7]. discuss the applicability
of several mutliaxial fatigue damage criterions
under variable amplitude loading.
Another class of fatigue criterion is the
energy based parameters, which also use the
critical plane concept. Smith et al. [8] proposed
Smith-Watson-Topper (SWT) criterion which
is well-known and widely accepted. Chu et al.
[9] proposed a criterion that extends the SWT
criterion to include a shear term. Liu [10] used
a virtual energy method for shear and normal
facture. Glinka et al. [11] proposed a criterion
based on the summation of the product of nor-
mal stress and strain ranges, and that of shear
stress and strain ranges on the critical shear
plane.
In this paper, a stress-based fatigue damage
criterion for multiaxial fatigue is proposed. Ex-
periment data of three metals [12-14] were used
to estimate the criterion, with the lives ranging
from 8.5×103 to 1.3×106 cycles, and two classi-
cal critical plane criterions are used to compare
with this criterion. The results show that the
new criterion correlates with the experimen-
tal results very well and effects for multiaxial
high-cycle fatigue cases.
2. The establish of the stress-based
high cycle multiaxial fatigue damage
criterion
A load-based criterion for damage to multi-
axis fatigue cycles is established. The new fa-
tigue damage criterion is based on four con-
cepts as follows:
Concept 1: Multiaxial fatigue damage
occurred on the plane of maximum shear
stress range, which is defined as the criti-
cal plane. Critical plane method is developed
on the basis of phenomenological observations
of fatigue crack development. The critical plane
approach receives the most attention because
of its good correlation with test data and its ex-
plicit physical meaning. Metal fatigue experi-
ments show that the cracks generally propa-
gate along the plane of maximum shear stress
range15. In this paper, the critical plane is de-
fined as the plane which suffers the maximum
shear stress range.
Concept 2: The maximum shear stress
amplitude and the normal stress ampli-
tude on the critical plane are the two main
factors contribute to the fatigue damage.
The critical plane method generally uses com-
bination of shear stress and normal stress or
stress amplitudes on the critical plane as dam-
age parameters for HCF [16,17]. The shear
stress induces dislocation movement along slip
line, while the normal stress opens the crack,
reduces friction between the crack surfaces and
accelerates the propagation of the crack [18].
In the new fatigue damage criterion, the dam-
age parameters are shear stress amplitude and
normal stress amplitude.
Concept 3: In uniaxial conditions (ten-
sion or torsion), the stress and fatigue cir-
cle follow the Basquin function. Under mac-
roscopically elastic uniaxial loading conditions,
fatigue life can be described in terms of a S-N
(or Wöhler) curve which associates the stress
amplitude with the life (described in the num-
ber of cycles to failure) of a experimental speci-
men or a engineering component. Generally,
the relationship between the stress amplitude
and the fatigue life can be described using an
exponential equation. The mostly used equa-
tion is known as Basquin function as follows:
S S Nf f
n
= ( )' 2 (1)
Where S is the uniaxial stress amplitude, Nf is
the number cycles to fatigue, S’
f and n are mate-
rial parameters.
For tension or torsion fatigue test, Basquin
function can be described as
σ σ
τ τ
a f f
b
a f f
c
N
N
= ( )
= ( )
'
'
2
2
(2)
Where σa is the normal stress amplitude, σf
’
is fatigue strength coefficient, b is fatigue
strength exponent, τa is shear stress amplitude,
τf
’ is shear fatigue strength coefficient, c is shear
fatigue strength exponent.
408 Functional materials, 25, 2, 2018
Xin Li et al. / A new stress-based multiaxial ...
Concept 4: The total fatigue damage is a
function of the damage caused by normal
stress amplitude and shear stress ampli-
tude on the critical plane. Based on concept
2, we can assume that the total damage in one
cycle is a function of the damages caused by
normal stress and shear stress on the critical
plane. That is to say
D f D D= ( )σ τ, (3)
Where D is the total damage of one cycle, D=1/
Nf , Dσ is the damage caused by normal stress
amplitude on the critical plane, Dτ is the dam-
age caused by shear stress amplitude on the
critical plane.
The fatigue damage caused by normal stress
and shear stress can be converted from Equa-
tion (2)
D Dn a
f
b
a
f
c
σ τ
σ
σ
τ
τ
=
æ
è
ççççç
ö
ø
÷÷÷÷÷
=
æ
è
ççççç
ö
ø
÷÷÷÷÷
- -
,
' '
,
1 1
(4)
Where σn,a is the amplitude of the normal stress
on the critical plane, τa is the amplitude of the
shear stress on the critical plane.
With the analysis of the test data of differ-
ent metals, we define the form of the damage
function as follows
D D D= α σ
β
τ
γ (5)
Where α, β and γ are coefficients of material.
Substituted Equation (4) in Equation (5),
the damage function of the new fatigue damage
criterion is
D
n a a
n a
f
b
a
f
c
σ τ α
σ
σ
τ
τ
β γ
,
,
' '
,( )
æ
è
çççç
ö
ø
÷÷÷÷
æ
è
çççç
ö
ø
÷÷÷÷
=
- -
(6)
The fatigue life is reciprocal of the damage.
3. Criterion assessment
Material test data. Combined axial load or
bending and torsion experimental data taken
from the published literature [12-14] were used
in order to assessment the new fatigue damage
criterion. The test materials conclude SM45C
structural steel, 6082-T6 and 7075-T651 alumi-
num alloys. The tensile performances of these
metals are listed in Table 1, the bending and
torsion experimental data are listed in Table 2.
The test load can be described as follows
σ σ σ ω
τ τ τ ω ϕ
x x m x a
xy xy m xy a
t t
t t
( ) = + ( )
( ) = + +( )
, ,
, ,
sin
sin
(7)
The material coefficients used in the fatigue
damage criterion are listed in Table 3.
The contrastive criterions. Two critical
plane criterions proposed by Findly [3] and Mc-
Diarmid [5] are compared with the new crite-
rion.
Findly proposed a linear combination of nor-
mal stress and shear stress in the critical plane
for a given number of cycles to failure
τ σ τa n f f
c
k N+ = ( )' 2 (8)
Table 1 Tensile performance of metals
Metal type SM45C steel 6082-T6 AL 7075-T651 AL
Young modulus (GPa) 208.6 69.4 71.7
Yield stress (MPa) 418 301 501
Tensile strength (MPa) 731 343 561
Fig.1 The comparison of observed lives and the
new criterion prediction lives.
Fig.2 The prediction lives comparison of differ-
ent criterions for SM45C steel.
Functional materials, 25, 2 2018 409
Xin Li et al. / A new stress-based multiaxial ...
Where k is a material coefficient. The critical
plane is defined as the plane experience the
maximum value of fatigue damage. This crite-
rion was effective for proportional combination
of bending and torsion condition.
McDiarmid noticed that the important pa-
rameters of loading in HCF are the maximum
Table 2 The bending and torsion loading parameters and observed lives Nf
exp . Prediction lives NFD from
Findly, NMD from McDiarmid and NNEW from the new criterion
No. σx,a
(MPa)
σx,m
(MPa)
τxy,a
(MPa)
τxy,m
(MPa) φ (°) Nf
exp
(cycles)
NFD
(cycles)
NMD
(cycles)
NNEW
(cycles)
SM45C steel bearing-torsion
1 390 0 151 0 0 8500 3894 12203 8465
2 349 0 148 0 0 24000 18723 56609 22622
3 325 0 153 0 0 32000 34589 100033 35283
4 372 0 93 0 0 38000 75341 268707 39016
5 309 0 134 0 0 100000 172938 518088 84512
6082-T6 aluminum alloy bearing-torsion
6 70 -3 118 0 0 71255 32493 33992 69769
7 71 -1 117 1 1 78730 34065 35670 74325
8 59 -1 100 1 -7 230750 121693 127282 356997
9 53 -1 83 1 -2 1018775 497186 521716 2071817
10 52 -2 82 0 2 1289550 551221 578247 2350208
11 147 -2 106 1 -4 31000 17275 18860 41134
12 151 -4 104 0 -3 64090 17510 19165 42524
13 163 -2 81 0 -5 124460 38276 42627 125552
14 147 1 90 -1 -8 132215 37471 41279 113714
15 146 -3 76 -1 -6 232370 77265 85848 294717
16 118 -3 82 1 -5 315795 119040 130226 454012
17 119 1 72 -1 0 694062 211765 233434 973212
7075-T651 aluminum alloy bearing-torsion
18 127.2 0 170.5 0 0 59194 20360 62695 55842
19 166.1 0 110.4 0 0 136646 143785 460252 182242
20 201.3 0 130 0 0 45500 35333 115236 29302
21 153.5 0 100.3 0 0 662627 287777 931454 440128
22 137.4 0 79.7 0 0 1018000 1093868 3819905 2280773
23 205.8 0 137.5 0 0 35804 25825 82384 20037
24 147.5 0 86.9 0 0 225000 589466 2038538 1037802
25 203.8 0 136.3 0 0 12708 27784 88576 22032
Fig.4 The prediction lives comparison of differ-
ent criterions for 7075-T651 aluminum alloy.
Fig.3 The prediction lives comparison of differ-
ent criterions for 6082-T6 aluminum alloy
410 Functional materials, 25, 2, 2018
Xin Li et al. / A new stress-based multiaxial ...
shear stress range and the normal stress on the
critical plane. The critical plane is defined as
the plane of maximum shear stress range. The
criterion is
τ τ σ σ τa u n f f
c
N+( ) = ( )-1 2 2,max
' (9)
Where τ-1 is fatigue limit of torsion, σu is ulti-
mate strength, σn,max is the maximum normal
stress on the critical plane.
The particular parameters of these criteri-
ons are listed in Table 4. Some parameters (k in
Findly criterion, α, β and γ in the new criterion)
are obtained from fitting of the bending-torsion
test data.
4. Results and discussion
The comparison of the observed lives and
new criterion prediction lives of different mate-
rials are showed in Fig.1. Fig.2 to Fig.4 demon-
strate the new criterion prediction lives in com-
parison with Findly criterion and McDiarmid
Table 3 Material coefficients used in the fatigue damage criterion
σf’ (MPa) b τf’ (MPa) c
SM45C steel 1024.3 –0.0946 441.44 –0.0511
6082-T6 Al 1053.1 –0.1426 470.27 –0.1258
7075-T651 Al 1072.6 –0.1246 760.33 –0.1264
Table 4 Parameters of these Findely criterion, McDiarmid criterion and the New criterion
Material
Findly criterion McDiarmid criterion New criterion
k τ–1 (MPa) σu (MPa) a b g
SM45C steel 0.219 197.2 731 3.789 0.326 0.409
6082-T6 Al 0.12 68.2 343 9.295 0.0138 1.225
7075-T651 Al 0.377 109.9 561 74.346 0.427 0.905
Fig.5 Error indexes of different criterions for
SM45C steel.
criterion prediction lives for the three materials
respectively. In all figures, the central diagonal
line presents the perfect agreement between
the observed lives and the prediction lives. For
Fig.2 to Fig.4, the dashed lines represent factor
2 and factor 3 bandwidths.
Fig.1 proves that the new criterion matches
the test result well. Fig.2 to Fig.4 show that for
different materials, the new criterion’s predic-
tion result is the best among the three crite-
rions. Generally, most prediction life points
of Findly criterion are in factor 3 band, while
some prediction life points of McDiarmid cri-
terion are out of factor 3 band. For 6082-T6
aluminum alloy, these two criterions perform
almost the same.
For a quantitative judgment of the predic-
tion quality of the new criterion and the com-
parison of different criterions, an error index is
introduced as follows
I
N N
N
f
pre
f
=
-
´
ln ln
ln
%
exp
exp
100 (10)
Fig.6 Error indexes of different criterions for
6082-T6 aluminum alloy.
Functional materials, 25, 2 2018 411
Xin Li et al. / A new stress-based multiaxial ...
The comparisons of different criterions for
the three materials are shown in Fig.5 to Fig.7
respectively. For SM45C steel, the error (ab-
solute value) of the new criterion is less than
1.5%, while the maximum errors (absolute
value) of Findly and McDiarmid are up to 8.6%
and 18.5% respectively; for 6082-T6 aluminum
alloy, the error (absolute value) of the new cri-
terion is less than 5.2%, while the maximum
errors (absolute value) of Findly and McDiar-
mid are up to 11.7% and 10.9% respectively; for
7075-T651 aluminum alloy, the error (absolute
value) of the new criterion is less than 12.4%,
while the maximum errors (absolute value)
of Findly and McDiarmid are up to 9.7% and
20.5% respectively. Generally the prediction er-
ror of the new criterion is less than Findly cri-
terion and McDiarmid criterion. But for 7075-
T651 aluminum alloy, the maximum error of
Findly criterion is less than the new criterion.
The prediction result of McDiarmid criterion is
the worst among the three criterions.
3. Conclusion
A new concept is introduced to formulate
the new fatigue damage criterion. This new cri-
terion fits the test data of different materials
perfectly; most of the prediction lives points are
in factor 2 band; the error analysis shows that
the error of the new criterion generally with-
in the range of ±5%. It is more accurate than
Findly criterion and McDiarmid criterion. This
research provides a new thinking for high-cycle
fatigue life prediction.
Fig.7 Error indexes of different criterions for
7075-T651 aluminum alloy.
Acknowledgement
Project funded by China Postdoctoral Sci-
ence Foundation (2016M591060) and Beijing
Postdoctoral Research Foundation (2016ZZ-79)
are gratefully acknowledged.
Reference
1. Y.S. Garud. J Test Eval, 9, 165, 1981.
2. A. Karolczuk, E. Macha, Int J Fract, 134, 267,
2005.
3. W.N. Findly, J Eng Ind, 9, 301, 1959
4. F.B.Stulen, H.N. Cummings Proceedings of the
ASTM, 54, 822, 1954.
5. D.L.McDiarmid, Fatigue under out-of-phase biax-
ial stresses of different frequencies. In: Miller K.J.
and Brown M.W .(eds) Mutliaxial fatigue ASTM
STP 853. Philadelphia: ASTM, 1985, pp. 606-
621.
6. G. Rashed, R. Ghajar,,G., J Mech. Sci. Techn.,
21, 1153 2007.
7. H. Chen, D.G. Shang, Y.J. Tian, et al. J Mech.
Sci. Techn., 26, 3439, 2012.
8. R.N. Smith, P. Watson, T.H.Topper,. J Mater, 5,
767, 1970.
9. C.C. Chu, F.A.Conle, J.F.Bonnen, Mutliaxial
stress-strain modeling and fatigue life predic-
tion of SAE axle shafts. In: McDowell D,L, and
Ellis R. (eds) Advances in multiaxial fatigue
ASTM STP 1191. Philadelphia: ASTM, 1993,
pp. 37-54.
10. R.C.Liu, A method based on a virtual strain-en-
ergy parameters for multiaxial fatigue. In: Mc-
Dowell, DL and Ellis R (eds) Advances in mul-
tiaxial fatigue ASTM STP 1191. Philadelphia:
ASTM, 1993, pp. 67-84..
11. G. Glinka, G.Shen, A.Plumtree, Fatigue Fract
Eng Mater Struct,, 18, 37, 1995.
12. S.B. Lee, A criterion for fully reversed out-of
–phase torsion and bending. In: Miller KJ and
Brown MW (eds) Mutiaxial fatigue ASTM STP
853. Philadelphia: ASTM, 1985, pp. 553-568.
13. L. Susmel, N. Petrone, Multiaxial fatigue life es-
timations for 6082-T6 cylindrical specimens un-
der in-phase and out-of-phase biaxial loadings
In: Carpinteri A et al. (eds), Biaxial/multiaxial
fatigue and fracture. Oxford: Elsevier, 2002, pp.
83-104.
14. T. Zhao, Y. Jiang Y,. Int J Fatigue, 30, 834,
2008.
15. G. Marquis, D. Society, Fatigue Fract Engng
Mater Struct , 23, 293, 2000.
16. T. Matake, Bull Jpn Soc Mech Eng, 20, 257, 2000.
17. D.L. McDiarmid, Fatigue Fract Engng Mater
Struct ,14, 429, 1991.
18. D. Socie, Critical plane approaches for multiaxi-
al fatigue damage assessment. In: McDowell D.L
and Ellis R. (eds) Advances in multiaxial fatigue
ASTM STP 191. Philadelphia: ASTM, 1993, pp.
7-36.
|