Colonization capacity and monitoring of the biocontrol agent Pseudomonas sp. IMBG163 on wheat roots

The effect of Pseudomonas sp. IMBG163 on wheat seedlings (Triticum aestivum L. cv. Katyusha) was studied. This strain has been marked with the gus reporter gene in order to examine a colonization pattern and to monitor its maintenance on the plant roots. The strain IMBG163 significantly enhanced all...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Біополімери і клітина
Дата:2004
Автори: Kovalchuk, M.V., Lytvynenko, T.L., Kononuchenko, O.V., Voznyuk, T.M., Rymar, S.Yu., Negrutska, V.V., Kozyrovska, N.O.
Формат: Стаття
Мова:English
Опубліковано: Інститут молекулярної біології і генетики НАН України 2004
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/157217
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Colonization capacity and monitoring of the biocontrol agent Pseudomonas sp. IMBG163 on wheat roots / M.V. Kovalchuk, T.L. Lytvynenko, O.V. Kononuchenko, T.M. Voznyuk, S.Yu. Rymar, V.V. Negrutska, N.O. Kozyrovska // Біополімери і клітина. — 2004. — Т. 20, № 6. — С. 530-534. — Бібліогр.: 32 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-157217
record_format dspace
spelling Kovalchuk, M.V.
Lytvynenko, T.L.
Kononuchenko, O.V.
Voznyuk, T.M.
Rymar, S.Yu.
Negrutska, V.V.
Kozyrovska, N.O.
2019-06-19T20:24:04Z
2019-06-19T20:24:04Z
2004
Colonization capacity and monitoring of the biocontrol agent Pseudomonas sp. IMBG163 on wheat roots / M.V. Kovalchuk, T.L. Lytvynenko, O.V. Kononuchenko, T.M. Voznyuk, S.Yu. Rymar, V.V. Negrutska, N.O. Kozyrovska // Біополімери і клітина. — 2004. — Т. 20, № 6. — С. 530-534. — Бібліогр.: 32 назв. — англ.
0233-7657
https://nasplib.isofts.kiev.ua/handle/123456789/157217
574:539
DOI: http://dx.doi.org/10.7124/bc.0006D4
The effect of Pseudomonas sp. IMBG163 on wheat seedlings (Triticum aestivum L. cv. Katyusha) was studied. This strain has been marked with the gus reporter gene in order to examine a colonization pattern and to monitor its maintenance on the plant roots. The strain IMBG163 significantly enhanced all biometric parameters measured: dry weight, height of shoots, length of roots. Co-culture of IMBG163 with the plant growth promoting bacterium Paenibacillus sp. IMBG156 did enhance the PGP effects. Detection of marked experimental bacterium on/into the plant have being performed with histochemical GUS assay and did not reveal the endophytic pattern of colonization. For monitoring of IMBG163 in the rhizosphere, a culture-independent method, ARDRA, has been used. A combination of conventional and molecular techniques showed IMBG163 to be effective and persistent colonizer of the wheat roots.
Вивчено вплив бактерії Pseudomonas sp. IMBG163 на паростки пшениці (Triticum aestivum L, сорт Катюша). Згаданий штам мітили репортерним gus геном для дослідження способу ко­лонізації та моніторингу присутності бактерії на коренях рослини. Штам IMBG163 значно збільшував усі вимірювані біометричні параметри: суху масу рослини, висоту пагонів та довжину коріння. При спільному культивуванні IMBG163 з бактерією, яка сприяє росту рослин (Paenibacillus sp. IMBG 156), спостерігається зростання ростстимулювальних ефектів. Детекцію міченої досліджуваної бактерії в/на рослині проводили за допомогою гістохімічного аналізу, при цьому не виявлено ендофітного характеру колонізації. Для моніторингу IMBG163 у ризосфері пшениці застосовували незалежну від культивування бактерій методику ARDRA (рестрикційний аналіз ампліфікованої рДНК). Завдяки поєднанню традиційних і молекулярних методів доведено, що IMBG163 ефективно та стабільно колонізує корені пшениці.
Изучено влияние бактерии Pseudomonas sp. IMBG163 на прор­стки пшеницы (Triticum aestivum, сорт Катюша). Этот штамм метили репортерным gus геном для исследования способа колонизации и мониторинга его присутствия на кор­нях растения. Штамм IMBG163 значительно повышал все измеряемые биометрические параметры: сухую массу расте­ния, высоту побегов и длину корней. При совместном культи­вировании IMBG163 с бактерией, способствующей росту рас­тений (Paenibacillus sp. IMBG 156), наблюдается возрастание ростстимулирующих эффектов. Детекцию меченой исследо­ванной бактерии в/на растении проводили с помощью гисто­химического анализа» при этом не обнаружено эндофитного характера колонизации. Для мониторинга IMBG163 в ризосфере пшеницы применяли не зависимый от культивирования бактерий метод ARDRA (рестрикционный анализ амплифицированной рДНК). Используя комбинацию традиционных и молекулярных методов доказано, что IMBG163 эффективно и стабильно колонизирует корни пшеницы.
en
Інститут молекулярної біології і генетики НАН України
Біополімери і клітина
Молекулярна та клітинна біотехнології
Colonization capacity and monitoring of the biocontrol agent Pseudomonas sp. IMBG163 on wheat roots
Колонізаційна здатність та моніторинг біоконтролюючого агента Pseudomonas sp. IMBG 163 на коренях пшениці
Colonization capacity and monitoring of the biocontrol agent Pseudomonas sp. IMBG163 on wheat roots
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Colonization capacity and monitoring of the biocontrol agent Pseudomonas sp. IMBG163 on wheat roots
spellingShingle Colonization capacity and monitoring of the biocontrol agent Pseudomonas sp. IMBG163 on wheat roots
Kovalchuk, M.V.
Lytvynenko, T.L.
Kononuchenko, O.V.
Voznyuk, T.M.
Rymar, S.Yu.
Negrutska, V.V.
Kozyrovska, N.O.
Молекулярна та клітинна біотехнології
title_short Colonization capacity and monitoring of the biocontrol agent Pseudomonas sp. IMBG163 on wheat roots
title_full Colonization capacity and monitoring of the biocontrol agent Pseudomonas sp. IMBG163 on wheat roots
title_fullStr Colonization capacity and monitoring of the biocontrol agent Pseudomonas sp. IMBG163 on wheat roots
title_full_unstemmed Colonization capacity and monitoring of the biocontrol agent Pseudomonas sp. IMBG163 on wheat roots
title_sort colonization capacity and monitoring of the biocontrol agent pseudomonas sp. imbg163 on wheat roots
author Kovalchuk, M.V.
Lytvynenko, T.L.
Kononuchenko, O.V.
Voznyuk, T.M.
Rymar, S.Yu.
Negrutska, V.V.
Kozyrovska, N.O.
author_facet Kovalchuk, M.V.
Lytvynenko, T.L.
Kononuchenko, O.V.
Voznyuk, T.M.
Rymar, S.Yu.
Negrutska, V.V.
Kozyrovska, N.O.
topic Молекулярна та клітинна біотехнології
topic_facet Молекулярна та клітинна біотехнології
publishDate 2004
language English
container_title Біополімери і клітина
publisher Інститут молекулярної біології і генетики НАН України
format Article
title_alt Колонізаційна здатність та моніторинг біоконтролюючого агента Pseudomonas sp. IMBG 163 на коренях пшениці
Colonization capacity and monitoring of the biocontrol agent Pseudomonas sp. IMBG163 on wheat roots
description The effect of Pseudomonas sp. IMBG163 on wheat seedlings (Triticum aestivum L. cv. Katyusha) was studied. This strain has been marked with the gus reporter gene in order to examine a colonization pattern and to monitor its maintenance on the plant roots. The strain IMBG163 significantly enhanced all biometric parameters measured: dry weight, height of shoots, length of roots. Co-culture of IMBG163 with the plant growth promoting bacterium Paenibacillus sp. IMBG156 did enhance the PGP effects. Detection of marked experimental bacterium on/into the plant have being performed with histochemical GUS assay and did not reveal the endophytic pattern of colonization. For monitoring of IMBG163 in the rhizosphere, a culture-independent method, ARDRA, has been used. A combination of conventional and molecular techniques showed IMBG163 to be effective and persistent colonizer of the wheat roots. Вивчено вплив бактерії Pseudomonas sp. IMBG163 на паростки пшениці (Triticum aestivum L, сорт Катюша). Згаданий штам мітили репортерним gus геном для дослідження способу ко­лонізації та моніторингу присутності бактерії на коренях рослини. Штам IMBG163 значно збільшував усі вимірювані біометричні параметри: суху масу рослини, висоту пагонів та довжину коріння. При спільному культивуванні IMBG163 з бактерією, яка сприяє росту рослин (Paenibacillus sp. IMBG 156), спостерігається зростання ростстимулювальних ефектів. Детекцію міченої досліджуваної бактерії в/на рослині проводили за допомогою гістохімічного аналізу, при цьому не виявлено ендофітного характеру колонізації. Для моніторингу IMBG163 у ризосфері пшениці застосовували незалежну від культивування бактерій методику ARDRA (рестрикційний аналіз ампліфікованої рДНК). Завдяки поєднанню традиційних і молекулярних методів доведено, що IMBG163 ефективно та стабільно колонізує корені пшениці. Изучено влияние бактерии Pseudomonas sp. IMBG163 на прор­стки пшеницы (Triticum aestivum, сорт Катюша). Этот штамм метили репортерным gus геном для исследования способа колонизации и мониторинга его присутствия на кор­нях растения. Штамм IMBG163 значительно повышал все измеряемые биометрические параметры: сухую массу расте­ния, высоту побегов и длину корней. При совместном культи­вировании IMBG163 с бактерией, способствующей росту рас­тений (Paenibacillus sp. IMBG 156), наблюдается возрастание ростстимулирующих эффектов. Детекцию меченой исследо­ванной бактерии в/на растении проводили с помощью гисто­химического анализа» при этом не обнаружено эндофитного характера колонизации. Для мониторинга IMBG163 в ризосфере пшеницы применяли не зависимый от культивирования бактерий метод ARDRA (рестрикционный анализ амплифицированной рДНК). Используя комбинацию традиционных и молекулярных методов доказано, что IMBG163 эффективно и стабильно колонизирует корни пшеницы.
issn 0233-7657
url https://nasplib.isofts.kiev.ua/handle/123456789/157217
citation_txt Colonization capacity and monitoring of the biocontrol agent Pseudomonas sp. IMBG163 on wheat roots / M.V. Kovalchuk, T.L. Lytvynenko, O.V. Kononuchenko, T.M. Voznyuk, S.Yu. Rymar, V.V. Negrutska, N.O. Kozyrovska // Біополімери і клітина. — 2004. — Т. 20, № 6. — С. 530-534. — Бібліогр.: 32 назв. — англ.
work_keys_str_mv AT kovalchukmv colonizationcapacityandmonitoringofthebiocontrolagentpseudomonasspimbg163onwheatroots
AT lytvynenkotl colonizationcapacityandmonitoringofthebiocontrolagentpseudomonasspimbg163onwheatroots
AT kononuchenkoov colonizationcapacityandmonitoringofthebiocontrolagentpseudomonasspimbg163onwheatroots
AT voznyuktm colonizationcapacityandmonitoringofthebiocontrolagentpseudomonasspimbg163onwheatroots
AT rymarsyu colonizationcapacityandmonitoringofthebiocontrolagentpseudomonasspimbg163onwheatroots
AT negrutskavv colonizationcapacityandmonitoringofthebiocontrolagentpseudomonasspimbg163onwheatroots
AT kozyrovskano colonizationcapacityandmonitoringofthebiocontrolagentpseudomonasspimbg163onwheatroots
AT kovalchukmv kolonízacíinazdatnístʹtamonítoringbíokontrolûûčogoagentapseudomonasspimbg163nakorenâhpšenicí
AT lytvynenkotl kolonízacíinazdatnístʹtamonítoringbíokontrolûûčogoagentapseudomonasspimbg163nakorenâhpšenicí
AT kononuchenkoov kolonízacíinazdatnístʹtamonítoringbíokontrolûûčogoagentapseudomonasspimbg163nakorenâhpšenicí
AT voznyuktm kolonízacíinazdatnístʹtamonítoringbíokontrolûûčogoagentapseudomonasspimbg163nakorenâhpšenicí
AT rymarsyu kolonízacíinazdatnístʹtamonítoringbíokontrolûûčogoagentapseudomonasspimbg163nakorenâhpšenicí
AT negrutskavv kolonízacíinazdatnístʹtamonítoringbíokontrolûûčogoagentapseudomonasspimbg163nakorenâhpšenicí
AT kozyrovskano kolonízacíinazdatnístʹtamonítoringbíokontrolûûčogoagentapseudomonasspimbg163nakorenâhpšenicí
first_indexed 2025-11-26T19:17:48Z
last_indexed 2025-11-26T19:17:48Z
_version_ 1850770977974124544
fulltext ISSN 0233-7657. Біополімери і клітина. 2004. Т. 20. № 6 Colonization capacity and monitoring of the biocontrol agent Pseudomonas sp. IMBG163 on wheat roots M. V. Kovalchuk, T. L. Lytvynenko, О. V. Kononuchenko, Т. M. Voznyuk, S. Yu. Rymar, V. V. Negrutska, N. O. Kozyrovska Institute of Molecular Biology and Genetics of National Academy of Sciences of Ukraine 150 Zabolotnoho str., Kyiv, 0 3 1 4 3 , Ukraine E. mail: Kozyr@imbg.org.ua The effect of Pseudomonas sp. IMBG163 on wheat seedlings (Triticum aestivum L. cv. Katyusha) was studied. This strain has been marked with the gus reporter gene in order to examine a colonization pattern and to monitor its maintenance on the plant roots. The strain IMBG163 significantly enhanced all biometric parameters measured: dry weighty height of shoots, length of roots. Co-culture of IMBG163 with the plant growth promoting bacterium Paenibacillus sp. IMBG156 did enhance the PGP effects. Detection of marked experimental bacterium on/into the plant have being performed with histochemical GUS assay and did not reveal the endophytic pattern of colonization For monitoring of IMBGJ63 in the rhizosphere, a culture-independent method, ARDRA, has been used. A combination of conventional and molecular techniques showed IMBG163 to be effective and persistent colonizer of the wheat roots. Introduction. Saprophytic pseudomonads are common root-colonizing bacteria that can improve plant growth or health. Efficient exploitation of these bacteria in agriculture requires knowledge of traits that enhance ecological performance in the rhizosphere. Current environmental criteria designed to improve crop and forest productivity, together with the development of a sustainable agriculture, and the intended reduction of the use of fertilizers and pesticides have produced an ongoing increase in scientific interest and practical use of the plant growth promoting bacteria and biocontrol agents as inocula [1 ]. These effects are due mostly to a non-infective interaction of root-associated bacteria with plants. However, in some cases, the use of bacteria in agriculture has no success expected, since the environment can appear to be different and hostile to some bacteria. Therefore, before the deli­ berate use of a beneficial bacterium as an inoculum, © M. V. KOVALCHUK, T. L. LYTVYNENKO, О. V. K O N O N U C H E N K O , Т. M. VOZNYUK, S. Yu. RYMAR, V. V NEGRUTSKA, N. O. KOZYROVSKA, 2 0 0 4 it is necessary to know some key parameters such as root colonization capacity, location, and degree of persistence of the inoculum [2]. The strain used in this work has already shown its antagonistic capacity [3]. Nevertheless, there is a paucity of data about conditions under which the inoculum strain has to compete with a wide variety of soil microorganisms. It is a well-established fact that Pseudomonas, being introduced into the microcosm, is able to enter into an unculturable state due to different reasons and cannot be cultivated by current techniques like the traditional agar plating [4, 5 ] . This limits the use­ fulness of colony counts. As a consequence, doubt has been raised that the results obtained seem not to be representative enough for the actual processes in nature. On the other hand, there is an increasing concern about the risk of using this group of bacteria in the processes such as biological control since some species are pathogens and monitoring Pseudomonas is an 530 mailto:Kozyr@imbg.org.ua MONITORING O F T H E B I O C O N T R O L A G E N T P S E U D O M O N A S sp, IMBG essential element of inoculation programs [6, 7] . Among the methods that have been suggested for monitoring bacteria in environmental samples are those based on usage of nucleic acids [8—10]. The aim of this work was to study the coloniza­ tion capacity, persistence, and colonization pattern the wheat rhizosphere and endosphere of Pseudo­ monas sp. IMBG 163, using both conventional and molecular methods. Materials and Methods. The bacterial strains used in this study — Pseudomonas sp. IMBG 163, Pseudomonas aureofaciens IMBG164, Klebsiella oxy- toca IMBG26, Paenibacillus sp. IMBG156 — are de­ posited in the collection of Institute of Molecular Biology and Genetics of NASU, Pantoea agglomerans IMV56 was kindly provided by Prof. R. Gvozdyak. The strains were grown on nutrient broth medium LB [111, except Paenibacillus sp., that used minimal MZ medium [12]. Pseudomonas sp. IMBG163 was tested for production of indole acetic acid (IAA), using the method described in [13]. Siderophore production was detected by growing the culture on KB [14]. Phosphate solubilization capacity [15] was tested on KB supplemented with calcium phosphate. Plants were maintained under natural light in controlled conditions (25/20 °С, 14/10 h light/dark,) in sand (a monoculture) and zeolite (Sokyrnytzya) (a bacterial assemblage) in a culture chamber of our design [16]. Ten wheat germinated seeds were inoculated by suspension of 10b colony-forming units (CFU). At the end of the experiment (30 days after inoculation) all plants were harvested and the following data were collected: dry weight, height of shoots, length of roots. To estimate the external root colonization, root sections were vortexed in 0.9 % NaCl, and serial dilutions were plated on LB and KB media supple­ mented with rifampicin (50 jug/ml) or streptomycin (100 jug/ml) when needed. To estimate the interior root colonization, root samples were surface disin­ fected with several incubations in Belizna (Kyiv) for 2 min alternated with rinsing in 0.9 % NaCl for 2 min; the surface disinfection parameters were opti­ mized prior to the experimentation with control of surface contamination. The conjugation between bac­ teria was performed on LB agar medium plates, and the plasmid pCAM140, conferring mTn5SsgusA20, was used as a vehicle of the gus gene [17]. Detection of bacteria on/into the plant and estimation of survival of experimental bacteria in the rhizosphere was performed with histochemical GUS assay [17]. DNA was isolated from the bacterial culture and plant tissues with kits from «МоВіо Inc.» (USA). Pseu- domonas-specific PCR amplifications were done as prescribed in [9]. 445 bp amplicons of the 16S rDNA were cleaved with Sail («Fermentas», Lithuania). The experimental scheme was repeated three times. Statistical analysis was performed using Sigma Plot 8.0 software. Standard deviations were calculated for each data point. Results and Discussion. Metabolic capacity of Pseudomonas sp. IMBG163. The auxin production of strain was not detected after growth in LB medium, however, this strain was able to mobilize iron from chelating agents of medium KB. The cleared halo of 2—3 cm has been observed around colonies. The strain was able also to solubilise calcium phosphate, forming the 2.5 cm halo around the colony. Although the mechanisms by which IMBG 163 promotes plant growth are not yet fully understood, it is clear that this may be siderophore production and phosphate mobilizing that is in agreement with well established data [18]. Colonization capacity. Pseudomonads are often unable to establish population in significant number on plant roots, including wheat, and turn noncul- turable [4, 19—21 ]. In this connection, Raaijmakers and Weller postulate that particular rhizobacterial genotypes have evolved a preference for colonization of specific crops [22]. Certain genotypes of pseu­ domonads well colonize wheat, including genetically modified strains, and establish high rhizosphere po­ pulation densities up to 107 CFU/g of root [23—26]. Our results show that strain IMBG 163 is also able to colonize the wheat root, grown in mineral substrate of low bioavailability. There were no striking differences in the total number of CFU among different sampling times within a 30 day period, and the number of bacteria isolated from 1 g of fresh root was (0.94— 1.3) 105 CFU. We did not also reveal a decrease in the population size or unculturable state of the strain when it was used as monoculture in aseptic condi­ tions. Van Elsas et al. [8 ], studying the colonization of wheat roots by different strains of Pseudomonas, found that the highest number of bacteria was obtai­ ned 4 weeks after inoculation, decreasing afterwards. In the wheat rhizosphere inoculated with the rationally assembled consortium of plant growth pro­ moting rhizobacteria, the strain IMBG 163 was quite competitive on the background of beneficial bacteria (fig. 1). It was not eliminated from the bacterial community in the plant rhizosphere. Moreover, the strain raised 20-fold population being used in concert 531 K.OVALCHUK М. V. ЕТ AL. Bacterial strains Fig. 1. Colonization capacity of Pseudomonas sp. IMBG 163 as a member of bacterial assemblage in the wheat rhizosphere: 2 weeks after a planting (7 —Klebsiella oxytoca\ 2 — Paenibacillus sp.; 3 — Pseudomonas sp.; 4 — Pantoea agglomerans; 5 — Pseudomonas aureofaciens) 1 2 3 Fig. 2. Restriction pattern of the Pseudomonas sp. IMBG163 16S rDNA (455 bp): 1 — Sail fragments; 2 — 445 bp fragment of 16S rDNA; 3 — marker (1031, 900, 800, 700, 600, 500, 400, 300, 250, 200, 150, 100, 50 bp, «Fermentas», Lithuania) with the mentioned bacteria. Our data exhibited high colonization capacity of Pseudomonas sp. IMBG 163 in the wheat rhizosphere grown in soil of low bioavaila­ bility in contrast to the data of Hase et al. [4] and Bjorklof et al. [21 ], who found that the inoculant strain on the roots of plants grown in the low fertility soil was mostly nonculturable cells. We did not observe the endophytic colonization of wheat, although certain species of pseudomonads are known as endorhizosphere colonizers [27—30]. The bacterial cells entered into root hair, however, they did not spread in plant tissue. Effects of the inoculated bacterium on the wheat growth. As shown in the table, the strain increased all the biometrical parameters measured, and this corre­ lated with the earlier data [31 ]. Since the strain was shown to mobilize iron and phosphorus, the improved shoot growth could be the final result of improved nutrient uptake and plant nutrition. The dual-culture assays in which two strains were grown in a liquid medium and later were used for the inoculation of wheat seeds showed that two unrelated bacteria could stimulate the wheat growth and biomass accumulation (table). This is in agree­ ment with the recent data on interrelation of two unrelated Pseudomonas in the wheat rhizosphere [32]. Further experiments will show whether the bacteria due to this interpopulation communication in the rhizosphere stimulate each other in the expression of traits beneficial for plant growth or it is a cumulative effect of two bacteria. In conclusion, these results show that the strain IMBG 163 has good colonization capacity in the rhizo­ sphere of wheat. However, it is necessary not only to provide the right bacterium, but also the correct techniques to check the fate of the inoculum in order Biometrical data on effects of inoculation with plant growth promoting bacteria Pseudomonas sp. IMBG 163 on growth parameters of the 30-day wheat seedlings Dry weight of a single plant, g Shoot height, cm Root length, cm Control Pseudomonas sp. IMBG 163 Paenibacillus sp. IMBG 156 Pseudomonas sp. IMBG 163 and Paenibacillus sp. IMBG 156 0 , 0 3 5 ± 0 , 0 0 2 a 0 , 0 4 4 ± 0 , 0 0 2 b 0 , 0 3 6 ± 0 , 0 0 8 a 0 , 0 4 5 ± 0 , 0 0 3 b 4 0 , 4 6 6 ± 1,003a 4 4 , 3 1 6 ± l , 0 3 6 b 4 4 , 8 5 6 ± l , 2 1 2 b 4 5 , 1 7 3 ± l , 3 3 4 b 9 ,215±0 ,434a l l , 0 8 0 ± 0 , 4 5 7 b 10 ,960±0 ,460a l l , 6 6 5 ± 0 , 6 8 9 b N o t e . Error represents standard deviation. Treatment is different from the control at p = 0.05 as determined by Student's Mest. Values followed by the same letter in a column are not significantly different. 532 MONITORING OF T H E B I O C O N T R O L A G E N T P S E U D O M O N A S sp. IMBG to establish the most suitable way to use the micro­ organisms in agriculture. Monitoring the strain was carried out by a culture-independent method in order to detect the bacterium in a case when it entered in unculturable state under some unfavorable conditions. We used a PCR method targeting 16S ribosomal DNA for spe­ cific detection of Pseudomonas DNA in both plant and substratum DNA. A pair of primers, the universal 9—27 and specific for Pseudomonas DNA, PSM, creates amplicon of 445 bp [9]. The restriction enzyme Sail generates three fragments of around 75, 120 and 250 bp specific for Pseudomonas sp. IMBG163 (fig. 2). Periodical samplings and amp­ lifications showed presence of the bacterium DNA in total DNA isolated from the plant roots. M. В. Ковальчук, Т. Л. Литвиненко, О. В. Кононученко, Т. М. Вознюк, С. Ю. Римар, В. В. Негруцька, Н. О. Козировська Колонізаційна здатність та моніторинг біоконтролюючого агента Pseudomonas sp. IMBG 163 на коренях пшениці Резюме Вивчено вплив бактерії Pseudomonas sp. JMBG163 на паростки пшениці (Triticum aestivum L, сорт Катюша). Згаданий штам мітили репортерним gus геном для дослідження способу ко­ лонізації та моніторингу присутності бактерії на коренях рослини. Штам IMBGJ63 значно збільшував усі вимірювані біометричні параметри: суху масу рослини, висоту пагонів та довжину коріння. При спільному культивуванні IMBG163 з бактерією, яка сприяє росту рослин (Paenibacillus sp. IMBG 156), спостерігається зростання ростстимулювальних ефектів. Детекцію міченої досліджуваної бактерії в/на рослині проводили за допомогою гістохімічного аналізу, при цьому не виявлено ендофітного характеру колонізації. Для моніторингу IMBG163 у ризосфері пшениці застосовували незалежну від культивування бактерій методику ARDRA (рестрикційний аналіз ампліфікованої рДНК). Завдяки поєднанню традиційних і молекулярних методів доведено, що IMBG163 ефективно та стабільно колонізує корені пшениці. М. В. Ковальчук, Т. Л. Литвиненко, О. В. Кононученко, Т. Н. Вознюк, С. Е. Рымарь, В. В. Негруцкая, Н. А. Козыровская Колонизационная способность и мониторинг биоконтролирующего агента Pseudomonas sp. IMBG 163 на корнях пшеницы Резюме Изучено влияние бактерии Pseudomonas sp. IMBGJ63 на проро­ стки пшеницы (Triticum aestivum, сорт Катюша). Этот штамм метили репортерным gus геном для исследования способа колонизации и мониторинга его присутствия на кор­ нях растения. Штамм IMBG163 значительно повышал все измеряемые биометрические параметры: сухую массу расте­ ния, высоту побегов и длину корней. При совместном культи­ вировании IMBG163 с бактерией, способствующей росту рас­ тений (Paenibacillus sp. IMBG 156), наблюдается возрастание ростстимулирующих эффектов. Детекцию меченой исследо­ ванной бактерии в/на растении проводили с помощью гисто­ химического анализа» при этом не обнаружено эндофитного характера колонизации. Для мониторинга IMBGJ63 в ризос­ фере пшеницы применяли не зависимый от культивирования бактерий метод ARDRA (рестрикционный анализ амплифици- рованной рДНК). Используя комбинацию традиционных и мо­ лекулярных методов доказано, что IMBG163 эффективно и стабильно колонизирует корни пшеницы. REFERENCES 1. Montesinos Е. Development, registration and commercializa­ tion of microbial pesticides for plant protection / / Int. Mic­ robiol .—2003.—6.—P. 245—252 . 2. Wiehe W., Hoflich G. Establishment of plant growth promoting bacteria in the rhizosphere of subsequent plants after harvest of the inoculated precrops / / Microbiol. Res .—1995.—150 — P. 331—336. 3. Kovalchuk M. V., Negrutska V. V., Zaetz I. E., Pasechnik L. A., Gvozdyak R. J., Kozyrovska N. O. Ecologically-friendly crop production with microbial inoculants. II. Biocontrol ca­ pacity of bacterial isolates, candidates for inoculant develop­ ment / / Int. Conf. Natural Ecosystems of the Carpathian Mountains Under Conditions of Intensive Anthropogenic Impact (October 4—7, 2 0 0 1 , Uzhhorod, Ukraine) .—Uzhhorod, 2001.—P. 82—85. 4. Ease C, Hottinger M., Moenne-Loccoz Y. Survival and cell culturability of biocontrol Pseudomonas fluorescens СНА0 in the rhizosphere of cucumber grown in two soils of contrasting fertility status / / Biol, and Fert. Soi ls .—2000.—32.—P. 217— 221. 5. Mascher F., Hase C, Moenne-Loccoz Y., Defago G. The viable-but-nonculturable state induced by abiotic stress in the biocontrol agent Pseudomonas fluorescens СНА0 does not promote strain persistence in soil / / Appl. Environ. Micro­ biol .—2000.—66.—P. 1662—1667. 6. Lee K, Lim J. В., Yum J. H., Yong D., С hong Y., Kim J. M., Livermore D. M. b l a V I M „ 2 cassette-containing novel integrons in metallo-jS-lactamase-producing Pseudomonas aeruginosa and Pseudomonas putida isolates disseminated in a Korean hospital / / Antimicrob. Agents and Chemother . — 2 0 0 2 . — 4 6 . — P. 1053—1058. 7. Docquier J. D., Riccio M. L, Mugnaioli C, Luzzaro F., Endimiani A., Toniolo A., Amicosante G., Rossolini G. M. IMP-12, a new plasmid-encoded metallo-^-lactamase from a Pseudomonas putida clinical isolate / / Antimicrob. Agents and Chemother.—2003.—47.—P. 1522—1528. 8. Van Elsas J. D., Duarte G. F., Rosado A. S., Smalla К Microbiological and molecular biological methods for monito­ ring microbial inoculants and their effects in the soil environ­ ment / / J. Microbiol. Meth .—1998.—32.—P. 133—154. 9. Johnsen K, Enger Q., Jacobsen C. S., Thirup L, Torsvik V. Quantitative selective PCR of 16S ribosomal DNA correlates well with selective agar plating in describing population dy­ namics of indigenous Pseudomonas spp. in soil hot spots / / Appl. Environ. Microbiol .—1999.—65.—P. 1786—1788. 10. Rezzonico F., Moenne-Loccoz Y., Defago G. Effect of stress on the ability of a phlA-based quantitative competitive PCR assay to monitor biocontrol strain Pseudomonas fluorescens СНА0 / / Appl. Environ. Microbiol .—2003.—69.—P. 686—690. 11. Miller J. H. Experiments in molecular genetics.—New York: Cold Spring Harbor Lab. press, 1972.—436 p.. 12. Пат. України 22797A. Спосіб отримання біопрепарату / Н. О. Козировська, О. М. Громозова / / Опубл. 21.04.98. 533 KOVALCHUK M. V. ET AL. 13. Tang Y. M.f Bonner J. The enzymatic inactivation of in- doleacetic acid. 1. Some characteristics of the enzyme con­ tained in pea seedlings / / Arch. Biochem.—1947.—13.— P. 11—25. 14. King E. O., Ward M. K, Raney D. E. Two simple media for the demonstration of pyocyanin and fluorescin / / J . Lab. Clin. Med.—1954.—44.—P. 301—307 . 15. Аристовская Т. В., Владимирская М. Е., Голлербах М. М. Большой практикум по микробиологии / Под ред. Г. Л. Селибера.—М.: Высш. шк., 1962.—490 с. 16. Kovalchuk М. V, Negrutska V. V.f Kovtunovych G. L., bar О. V, Korniichuk O. S.t Rogutskyi I. S.t Alpatov A. P.t Kozyrovska N. O., Kordyum V. A. Modeling the pNARSLux transfer in the wheat rhizosphere under simulated microgravity / / Kosmichna nauka і technologiya (Suppl . ) .—2003.—9, N 2.—P. 10—14. 17. Wilson K. J., Sessitsch A , Corbo J. C , Jiller К E., Akkermans A. D. L., Jefferson R. A. /^-Glucuronidase (GUS) transports for ecological and genetic studies of rhizobia and other Gram-negative bacteria / / Microbiology.—1995.— 141.—P. 1691—1705. 18. Dobbelaere S., Vanderleyden Okon Y. Plant growth- promoting effects of diazotrophs in the rhizosphere / / Crit. Revs Plant Sc i .—2003.—22, N 2 .—P. 107—149. 19. Troxler /., Zala M., Moenne-Loccoz Y., Keel C , Defago G. Predominance of nonculturable cells of the biocontrol strain Pseudomonas fluorescens СНА0 in the surface horizon of large outdoor lysimeters / / Appl. Environ. Microbiol.—1997.—63.— P. 3776—3782. 20. Normander В., Hendriksen N. В., Nybroe O. Green fluores­ cent protein-marked Pseudomonas fluorescens: localization, viability, and activity in the natural barley rhizosphere / / Appl. Environ. Microbiol .—1999.—65.—P. 4646—4651 . 21. Bjbrklbf K, Sen R., Jorgensen K. S. Maintenance and impacts of an inoculated mer/luc-tagged Pseudomonas fluorescens on microbial communities in birch rhizospheres developed on humus and peat / / Microb. Eco l .—2003 .—45.—P. 39—52. 22. Raaijmakers J. M., Weller D. M. Exploiting genotypic diversity of 2,4-diacetylphloroglucinol-producing Pseudomonas spp.: characterization of superior root-colonizing P. fluorescens stra­ in Q 8 r l - 9 6 / / Appl. Environ. Microbiol .—2001.—67.— P. 2545—2554. 23. McSpadden-Gardener В. В., Schroeder K. L, Kalloger S. E., Raaijmakers J. M., Tnomas now L. S., Weller D. M. Genotypic and phenotypic diversity of phlD-containing Pseudomonas strains isolated from the rhizosphere of wheat / / Appl. Environ. Microbiol.—2000.—66.—P. 1939—1946. 24. Van Overbeek L. S., Van Veen J. A., Van Elsas J. D. Induced reporter gene activity, enhanced stress resistance, and competi­ tive ability of a genetically modified Pseudomonas fluorescens strain released into a field plot planted with wheat / / Appl. Environ. Microbiol.—1997.—63.—P. 1965—1973. 25. Glandorf D. C. M.t Verheggen P., Jansen T, Jorritsma J.-W., Smit E., Leeflang P., Wernars K, Thomas how L S., Laureijs E., Thomas-Oates J. E., Bakker P. A. H. M., van Loon L C. Effect of genetically modified Pseudomonas putida WCS358r on the fungal rhizosphere microflora of field-grown wheat / / Appl. Environ. Microbiol.—2001.—67.—P. 3371—3378. 26. Viebahn M., Glandorf D. С. M., Ouwens T. W. M., Smit E., Leeflang P., Wernars K, Thomashow L. S., van Loon L C.t Bakker P. A. H. M. Repeated introduction of genetically modified Pseudomonas putida WCS358r without intensified effects on the indigenous microflora of field-grown wheat / / Appl. Environ. Microbiol.—2003.—69.— P. 3110—3118. 27. Benizni E., Schoeny A., Pichard C, Guckert A. External and internal colonization of maize by two Pseudomonas strains: enumeration by enzyme-linked immunosorbent assay (ELISA) / / Curr. Microbiol.—1997.—34.—P. 297—302. 28. Quadt-Hallmann A., Benhamou N., Kloepper J. W. Bacterial endophytes in cotton: mechanisms of entering the plant / / Can. J. Microbiol.—1997.—43.—P. 577—582 . 29. Garbeva P.t Overbeek L. S., Vuurde J. W., Elsas J. D. Analysis of endophytic bacterial communities of potato by plating and denaturing gradient gel electrophoresis (DGGE) of 16S rDNA based PCR fragments / / Microb. Ecol .—2001.— 4 1 , N 4 .—P. 369—383 . 30. Reiter В., Pfeifer U.y Schwab H., Sessitsch A. Response of endophytic bacterial communities in potato plants to infection with Erwinia carotovora subsp. atroseptica / / Appl. Environ. Microbiol.—2002.—68, N 5 .—P. 2261—2268. 31. Van Peer R., Schippers B. Plant growth responses to bacteriza- tion with selected Pseudomonas spp. starins and rhizosphere microbial development in hydroponic cultures / / Can. J. Microbiol.—1989.—35.—P. 456—463 . 32. Maurhofer M.t Baehler E., Notz R., Martinez V, Keel C. Cross talk between 2,4-diacetylphloroglucinol-producing bio­ control pseudomonads on wheat roots / / Appl. Environ. Microbiol.—2004.—70.—P. 1990— 1998. УДК 574:539 Надійшла до редакції 25.12.03 534