Colonization capacity and monitoring of the biocontrol agent Pseudomonas sp. IMBG163 on wheat roots
The effect of Pseudomonas sp. IMBG163 on wheat seedlings (Triticum aestivum L. cv. Katyusha) was studied. This strain has been marked with the gus reporter gene in order to examine a colonization pattern and to monitor its maintenance on the plant roots. The strain IMBG163 significantly enhanced all...
Збережено в:
| Опубліковано в: : | Біополімери і клітина |
|---|---|
| Дата: | 2004 |
| Автори: | , , , , , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут молекулярної біології і генетики НАН України
2004
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/157217 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Colonization capacity and monitoring of the biocontrol agent Pseudomonas sp. IMBG163 on wheat roots / M.V. Kovalchuk, T.L. Lytvynenko, O.V. Kononuchenko, T.M. Voznyuk, S.Yu. Rymar, V.V. Negrutska, N.O. Kozyrovska // Біополімери і клітина. — 2004. — Т. 20, № 6. — С. 530-534. — Бібліогр.: 32 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-157217 |
|---|---|
| record_format |
dspace |
| spelling |
Kovalchuk, M.V. Lytvynenko, T.L. Kononuchenko, O.V. Voznyuk, T.M. Rymar, S.Yu. Negrutska, V.V. Kozyrovska, N.O. 2019-06-19T20:24:04Z 2019-06-19T20:24:04Z 2004 Colonization capacity and monitoring of the biocontrol agent Pseudomonas sp. IMBG163 on wheat roots / M.V. Kovalchuk, T.L. Lytvynenko, O.V. Kononuchenko, T.M. Voznyuk, S.Yu. Rymar, V.V. Negrutska, N.O. Kozyrovska // Біополімери і клітина. — 2004. — Т. 20, № 6. — С. 530-534. — Бібліогр.: 32 назв. — англ. 0233-7657 https://nasplib.isofts.kiev.ua/handle/123456789/157217 574:539 DOI: http://dx.doi.org/10.7124/bc.0006D4 The effect of Pseudomonas sp. IMBG163 on wheat seedlings (Triticum aestivum L. cv. Katyusha) was studied. This strain has been marked with the gus reporter gene in order to examine a colonization pattern and to monitor its maintenance on the plant roots. The strain IMBG163 significantly enhanced all biometric parameters measured: dry weight, height of shoots, length of roots. Co-culture of IMBG163 with the plant growth promoting bacterium Paenibacillus sp. IMBG156 did enhance the PGP effects. Detection of marked experimental bacterium on/into the plant have being performed with histochemical GUS assay and did not reveal the endophytic pattern of colonization. For monitoring of IMBG163 in the rhizosphere, a culture-independent method, ARDRA, has been used. A combination of conventional and molecular techniques showed IMBG163 to be effective and persistent colonizer of the wheat roots. Вивчено вплив бактерії Pseudomonas sp. IMBG163 на паростки пшениці (Triticum aestivum L, сорт Катюша). Згаданий штам мітили репортерним gus геном для дослідження способу колонізації та моніторингу присутності бактерії на коренях рослини. Штам IMBG163 значно збільшував усі вимірювані біометричні параметри: суху масу рослини, висоту пагонів та довжину коріння. При спільному культивуванні IMBG163 з бактерією, яка сприяє росту рослин (Paenibacillus sp. IMBG 156), спостерігається зростання ростстимулювальних ефектів. Детекцію міченої досліджуваної бактерії в/на рослині проводили за допомогою гістохімічного аналізу, при цьому не виявлено ендофітного характеру колонізації. Для моніторингу IMBG163 у ризосфері пшениці застосовували незалежну від культивування бактерій методику ARDRA (рестрикційний аналіз ампліфікованої рДНК). Завдяки поєднанню традиційних і молекулярних методів доведено, що IMBG163 ефективно та стабільно колонізує корені пшениці. Изучено влияние бактерии Pseudomonas sp. IMBG163 на прорстки пшеницы (Triticum aestivum, сорт Катюша). Этот штамм метили репортерным gus геном для исследования способа колонизации и мониторинга его присутствия на корнях растения. Штамм IMBG163 значительно повышал все измеряемые биометрические параметры: сухую массу растения, высоту побегов и длину корней. При совместном культивировании IMBG163 с бактерией, способствующей росту растений (Paenibacillus sp. IMBG 156), наблюдается возрастание ростстимулирующих эффектов. Детекцию меченой исследованной бактерии в/на растении проводили с помощью гистохимического анализа» при этом не обнаружено эндофитного характера колонизации. Для мониторинга IMBG163 в ризосфере пшеницы применяли не зависимый от культивирования бактерий метод ARDRA (рестрикционный анализ амплифицированной рДНК). Используя комбинацию традиционных и молекулярных методов доказано, что IMBG163 эффективно и стабильно колонизирует корни пшеницы. en Інститут молекулярної біології і генетики НАН України Біополімери і клітина Молекулярна та клітинна біотехнології Colonization capacity and monitoring of the biocontrol agent Pseudomonas sp. IMBG163 on wheat roots Колонізаційна здатність та моніторинг біоконтролюючого агента Pseudomonas sp. IMBG 163 на коренях пшениці Colonization capacity and monitoring of the biocontrol agent Pseudomonas sp. IMBG163 on wheat roots Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Colonization capacity and monitoring of the biocontrol agent Pseudomonas sp. IMBG163 on wheat roots |
| spellingShingle |
Colonization capacity and monitoring of the biocontrol agent Pseudomonas sp. IMBG163 on wheat roots Kovalchuk, M.V. Lytvynenko, T.L. Kononuchenko, O.V. Voznyuk, T.M. Rymar, S.Yu. Negrutska, V.V. Kozyrovska, N.O. Молекулярна та клітинна біотехнології |
| title_short |
Colonization capacity and monitoring of the biocontrol agent Pseudomonas sp. IMBG163 on wheat roots |
| title_full |
Colonization capacity and monitoring of the biocontrol agent Pseudomonas sp. IMBG163 on wheat roots |
| title_fullStr |
Colonization capacity and monitoring of the biocontrol agent Pseudomonas sp. IMBG163 on wheat roots |
| title_full_unstemmed |
Colonization capacity and monitoring of the biocontrol agent Pseudomonas sp. IMBG163 on wheat roots |
| title_sort |
colonization capacity and monitoring of the biocontrol agent pseudomonas sp. imbg163 on wheat roots |
| author |
Kovalchuk, M.V. Lytvynenko, T.L. Kononuchenko, O.V. Voznyuk, T.M. Rymar, S.Yu. Negrutska, V.V. Kozyrovska, N.O. |
| author_facet |
Kovalchuk, M.V. Lytvynenko, T.L. Kononuchenko, O.V. Voznyuk, T.M. Rymar, S.Yu. Negrutska, V.V. Kozyrovska, N.O. |
| topic |
Молекулярна та клітинна біотехнології |
| topic_facet |
Молекулярна та клітинна біотехнології |
| publishDate |
2004 |
| language |
English |
| container_title |
Біополімери і клітина |
| publisher |
Інститут молекулярної біології і генетики НАН України |
| format |
Article |
| title_alt |
Колонізаційна здатність та моніторинг біоконтролюючого агента Pseudomonas sp. IMBG 163 на коренях пшениці Colonization capacity and monitoring of the biocontrol agent Pseudomonas sp. IMBG163 on wheat roots |
| description |
The effect of Pseudomonas sp. IMBG163 on wheat seedlings (Triticum aestivum L. cv. Katyusha) was studied. This strain has been marked with the gus reporter gene in order to examine a colonization pattern and to monitor its maintenance on the plant roots. The strain IMBG163 significantly enhanced all biometric parameters measured: dry weight, height of shoots, length of roots. Co-culture of IMBG163 with the plant growth promoting bacterium Paenibacillus sp. IMBG156 did enhance the PGP effects. Detection of marked experimental bacterium on/into the plant have being performed with histochemical GUS assay and did not reveal the endophytic pattern of colonization. For monitoring of IMBG163 in the rhizosphere, a culture-independent method, ARDRA, has been used. A combination of conventional and molecular techniques showed IMBG163 to be effective and persistent colonizer of the wheat roots.
Вивчено вплив бактерії Pseudomonas sp. IMBG163 на паростки пшениці (Triticum aestivum L, сорт Катюша). Згаданий штам мітили репортерним gus геном для дослідження способу колонізації та моніторингу присутності бактерії на коренях рослини. Штам IMBG163 значно збільшував усі вимірювані біометричні параметри: суху масу рослини, висоту пагонів та довжину коріння. При спільному культивуванні IMBG163 з бактерією, яка сприяє росту рослин (Paenibacillus sp. IMBG 156), спостерігається зростання ростстимулювальних ефектів. Детекцію міченої досліджуваної бактерії в/на рослині проводили за допомогою гістохімічного аналізу, при цьому не виявлено ендофітного характеру колонізації. Для моніторингу IMBG163 у ризосфері пшениці застосовували незалежну від культивування бактерій методику ARDRA (рестрикційний аналіз ампліфікованої рДНК). Завдяки поєднанню традиційних і молекулярних методів доведено, що IMBG163 ефективно та стабільно колонізує корені пшениці.
Изучено влияние бактерии Pseudomonas sp. IMBG163 на прорстки пшеницы (Triticum aestivum, сорт Катюша). Этот штамм метили репортерным gus геном для исследования способа колонизации и мониторинга его присутствия на корнях растения. Штамм IMBG163 значительно повышал все измеряемые биометрические параметры: сухую массу растения, высоту побегов и длину корней. При совместном культивировании IMBG163 с бактерией, способствующей росту растений (Paenibacillus sp. IMBG 156), наблюдается возрастание ростстимулирующих эффектов. Детекцию меченой исследованной бактерии в/на растении проводили с помощью гистохимического анализа» при этом не обнаружено эндофитного характера колонизации. Для мониторинга IMBG163 в ризосфере пшеницы применяли не зависимый от культивирования бактерий метод ARDRA (рестрикционный анализ амплифицированной рДНК). Используя комбинацию традиционных и молекулярных методов доказано, что IMBG163 эффективно и стабильно колонизирует корни пшеницы.
|
| issn |
0233-7657 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/157217 |
| citation_txt |
Colonization capacity and monitoring of the biocontrol agent Pseudomonas sp. IMBG163 on wheat roots / M.V. Kovalchuk, T.L. Lytvynenko, O.V. Kononuchenko, T.M. Voznyuk, S.Yu. Rymar, V.V. Negrutska, N.O. Kozyrovska // Біополімери і клітина. — 2004. — Т. 20, № 6. — С. 530-534. — Бібліогр.: 32 назв. — англ. |
| work_keys_str_mv |
AT kovalchukmv colonizationcapacityandmonitoringofthebiocontrolagentpseudomonasspimbg163onwheatroots AT lytvynenkotl colonizationcapacityandmonitoringofthebiocontrolagentpseudomonasspimbg163onwheatroots AT kononuchenkoov colonizationcapacityandmonitoringofthebiocontrolagentpseudomonasspimbg163onwheatroots AT voznyuktm colonizationcapacityandmonitoringofthebiocontrolagentpseudomonasspimbg163onwheatroots AT rymarsyu colonizationcapacityandmonitoringofthebiocontrolagentpseudomonasspimbg163onwheatroots AT negrutskavv colonizationcapacityandmonitoringofthebiocontrolagentpseudomonasspimbg163onwheatroots AT kozyrovskano colonizationcapacityandmonitoringofthebiocontrolagentpseudomonasspimbg163onwheatroots AT kovalchukmv kolonízacíinazdatnístʹtamonítoringbíokontrolûûčogoagentapseudomonasspimbg163nakorenâhpšenicí AT lytvynenkotl kolonízacíinazdatnístʹtamonítoringbíokontrolûûčogoagentapseudomonasspimbg163nakorenâhpšenicí AT kononuchenkoov kolonízacíinazdatnístʹtamonítoringbíokontrolûûčogoagentapseudomonasspimbg163nakorenâhpšenicí AT voznyuktm kolonízacíinazdatnístʹtamonítoringbíokontrolûûčogoagentapseudomonasspimbg163nakorenâhpšenicí AT rymarsyu kolonízacíinazdatnístʹtamonítoringbíokontrolûûčogoagentapseudomonasspimbg163nakorenâhpšenicí AT negrutskavv kolonízacíinazdatnístʹtamonítoringbíokontrolûûčogoagentapseudomonasspimbg163nakorenâhpšenicí AT kozyrovskano kolonízacíinazdatnístʹtamonítoringbíokontrolûûčogoagentapseudomonasspimbg163nakorenâhpšenicí |
| first_indexed |
2025-11-26T19:17:48Z |
| last_indexed |
2025-11-26T19:17:48Z |
| _version_ |
1850770977974124544 |
| fulltext |
ISSN 0233-7657. Біополімери і клітина. 2004. Т. 20. № 6
Colonization capacity and monitoring of the
biocontrol agent Pseudomonas sp. IMBG163
on wheat roots
M. V. Kovalchuk, T. L. Lytvynenko, О. V. Kononuchenko, Т. M. Voznyuk,
S. Yu. Rymar, V. V. Negrutska, N. O. Kozyrovska
Institute of Molecular Biology and Genetics of National Academy of Sciences of Ukraine
150 Zabolotnoho str., Kyiv, 0 3 1 4 3 , Ukraine
E. mail: Kozyr@imbg.org.ua
The effect of Pseudomonas sp. IMBG163 on wheat seedlings (Triticum aestivum L. cv. Katyusha) was
studied. This strain has been marked with the gus reporter gene in order to examine a colonization pattern
and to monitor its maintenance on the plant roots. The strain IMBG163 significantly enhanced all
biometric parameters measured: dry weighty height of shoots, length of roots. Co-culture of IMBG163 with
the plant growth promoting bacterium Paenibacillus sp. IMBG156 did enhance the PGP effects. Detection
of marked experimental bacterium on/into the plant have being performed with histochemical GUS assay
and did not reveal the endophytic pattern of colonization For monitoring of IMBGJ63 in the rhizosphere,
a culture-independent method, ARDRA, has been used. A combination of conventional and molecular
techniques showed IMBG163 to be effective and persistent colonizer of the wheat roots.
Introduction. Saprophytic pseudomonads are common
root-colonizing bacteria that can improve plant growth
or health. Efficient exploitation of these bacteria in
agriculture requires knowledge of traits that enhance
ecological performance in the rhizosphere. Current
environmental criteria designed to improve crop and
forest productivity, together with the development of
a sustainable agriculture, and the intended reduction
of the use of fertilizers and pesticides have produced
an ongoing increase in scientific interest and practical
use of the plant growth promoting bacteria and
biocontrol agents as inocula [1 ]. These effects are due
mostly to a non-infective interaction of root-associated
bacteria with plants. However, in some cases, the use
of bacteria in agriculture has no success expected,
since the environment can appear to be different and
hostile to some bacteria. Therefore, before the deli
berate use of a beneficial bacterium as an inoculum,
© M. V. KOVALCHUK, T. L. LYTVYNENKO,
О. V. K O N O N U C H E N K O , Т. M. VOZNYUK, S. Yu. RYMAR,
V. V NEGRUTSKA, N. O. KOZYROVSKA, 2 0 0 4
it is necessary to know some key parameters such as
root colonization capacity, location, and degree of
persistence of the inoculum [2]. The strain used in
this work has already shown its antagonistic capacity
[3].
Nevertheless, there is a paucity of data about
conditions under which the inoculum strain has to
compete with a wide variety of soil microorganisms. It
is a well-established fact that Pseudomonas, being
introduced into the microcosm, is able to enter into
an unculturable state due to different reasons and
cannot be cultivated by current techniques like the
traditional agar plating [4, 5 ] . This limits the use
fulness of colony counts. As a consequence, doubt has
been raised that the results obtained seem not to be
representative enough for the actual processes in
nature.
On the other hand, there is an increasing concern
about the risk of using this group of bacteria in the
processes such as biological control since some species
are pathogens and monitoring Pseudomonas is an
530
mailto:Kozyr@imbg.org.ua
MONITORING O F T H E B I O C O N T R O L A G E N T P S E U D O M O N A S sp, IMBG
essential element of inoculation programs [6, 7] .
Among the methods that have been suggested for
monitoring bacteria in environmental samples are
those based on usage of nucleic acids [8—10].
The aim of this work was to study the coloniza
tion capacity, persistence, and colonization pattern
the wheat rhizosphere and endosphere of Pseudo
monas sp. IMBG 163, using both conventional and
molecular methods.
Materials and Methods. The bacterial strains
used in this study — Pseudomonas sp. IMBG 163,
Pseudomonas aureofaciens IMBG164, Klebsiella oxy-
toca IMBG26, Paenibacillus sp. IMBG156 — are de
posited in the collection of Institute of Molecular
Biology and Genetics of NASU, Pantoea agglomerans
IMV56 was kindly provided by Prof. R. Gvozdyak.
The strains were grown on nutrient broth medium LB
[111, except Paenibacillus sp., that used minimal MZ
medium [12]. Pseudomonas sp. IMBG163 was tested
for production of indole acetic acid (IAA), using the
method described in [13]. Siderophore production
was detected by growing the culture on KB [14].
Phosphate solubilization capacity [15] was tested on
KB supplemented with calcium phosphate. Plants
were maintained under natural light in controlled
conditions (25/20 °С, 14/10 h light/dark,) in sand (a
monoculture) and zeolite (Sokyrnytzya) (a bacterial
assemblage) in a culture chamber of our design [16].
Ten wheat germinated seeds were inoculated by
suspension of 10b colony-forming units (CFU). At the
end of the experiment (30 days after inoculation) all
plants were harvested and the following data were
collected: dry weight, height of shoots, length of
roots. To estimate the external root colonization, root
sections were vortexed in 0.9 % NaCl, and serial
dilutions were plated on LB and KB media supple
mented with rifampicin (50 jug/ml) or streptomycin
(100 jug/ml) when needed. To estimate the interior
root colonization, root samples were surface disin
fected with several incubations in Belizna (Kyiv) for
2 min alternated with rinsing in 0.9 % NaCl for 2
min; the surface disinfection parameters were opti
mized prior to the experimentation with control of
surface contamination. The conjugation between bac
teria was performed on LB agar medium plates, and
the plasmid pCAM140, conferring mTn5SsgusA20,
was used as a vehicle of the gus gene [17]. Detection
of bacteria on/into the plant and estimation of
survival of experimental bacteria in the rhizosphere
was performed with histochemical GUS assay [17].
DNA was isolated from the bacterial culture and plant
tissues with kits from «МоВіо Inc.» (USA). Pseu-
domonas-specific PCR amplifications were done as
prescribed in [9]. 445 bp amplicons of the 16S rDNA
were cleaved with Sail («Fermentas», Lithuania).
The experimental scheme was repeated three
times. Statistical analysis was performed using Sigma
Plot 8.0 software. Standard deviations were calculated
for each data point.
Results and Discussion. Metabolic capacity of
Pseudomonas sp. IMBG163. The auxin production of
strain was not detected after growth in LB medium,
however, this strain was able to mobilize iron from
chelating agents of medium KB. The cleared halo of
2—3 cm has been observed around colonies. The
strain was able also to solubilise calcium phosphate,
forming the 2.5 cm halo around the colony. Although
the mechanisms by which IMBG 163 promotes plant
growth are not yet fully understood, it is clear that
this may be siderophore production and phosphate
mobilizing that is in agreement with well established
data [18].
Colonization capacity. Pseudomonads are often
unable to establish population in significant number
on plant roots, including wheat, and turn noncul-
turable [4, 19—21 ]. In this connection, Raaijmakers
and Weller postulate that particular rhizobacterial
genotypes have evolved a preference for colonization
of specific crops [22]. Certain genotypes of pseu
domonads well colonize wheat, including genetically
modified strains, and establish high rhizosphere po
pulation densities up to 107 CFU/g of root [23—26].
Our results show that strain IMBG 163 is also able to
colonize the wheat root, grown in mineral substrate of
low bioavailability. There were no striking differences
in the total number of CFU among different sampling
times within a 30 day period, and the number of
bacteria isolated from 1 g of fresh root was (0.94—
1.3) 105 CFU. We did not also reveal a decrease in
the population size or unculturable state of the strain
when it was used as monoculture in aseptic condi
tions. Van Elsas et al. [8 ], studying the colonization
of wheat roots by different strains of Pseudomonas,
found that the highest number of bacteria was obtai
ned 4 weeks after inoculation, decreasing afterwards.
In the wheat rhizosphere inoculated with the
rationally assembled consortium of plant growth pro
moting rhizobacteria, the strain IMBG 163 was quite
competitive on the background of beneficial bacteria
(fig. 1). It was not eliminated from the bacterial
community in the plant rhizosphere. Moreover, the
strain raised 20-fold population being used in concert
531
K.OVALCHUK М. V. ЕТ AL.
Bacterial strains
Fig. 1. Colonization capacity of Pseudomonas sp. IMBG 163 as a
member of bacterial assemblage in the wheat rhizosphere: 2 weeks
after a planting (7 —Klebsiella oxytoca\ 2 — Paenibacillus sp.; 3 —
Pseudomonas sp.; 4 — Pantoea agglomerans; 5 — Pseudomonas
aureofaciens)
1 2 3
Fig. 2. Restriction pattern of the Pseudomonas sp. IMBG163 16S
rDNA (455 bp): 1 — Sail fragments; 2 — 445 bp fragment of 16S
rDNA; 3 — marker (1031, 900, 800, 700, 600, 500, 400, 300, 250,
200, 150, 100, 50 bp, «Fermentas», Lithuania)
with the mentioned bacteria. Our data exhibited high
colonization capacity of Pseudomonas sp. IMBG 163 in
the wheat rhizosphere grown in soil of low bioavaila
bility in contrast to the data of Hase et al. [4] and
Bjorklof et al. [21 ], who found that the inoculant
strain on the roots of plants grown in the low fertility
soil was mostly nonculturable cells.
We did not observe the endophytic colonization of
wheat, although certain species of pseudomonads are
known as endorhizosphere colonizers [27—30]. The
bacterial cells entered into root hair, however, they
did not spread in plant tissue.
Effects of the inoculated bacterium on the wheat
growth. As shown in the table, the strain increased all
the biometrical parameters measured, and this corre
lated with the earlier data [31 ]. Since the strain was
shown to mobilize iron and phosphorus, the improved
shoot growth could be the final result of improved
nutrient uptake and plant nutrition.
The dual-culture assays in which two strains
were grown in a liquid medium and later were used
for the inoculation of wheat seeds showed that two
unrelated bacteria could stimulate the wheat growth
and biomass accumulation (table). This is in agree
ment with the recent data on interrelation of two
unrelated Pseudomonas in the wheat rhizosphere
[32]. Further experiments will show whether the
bacteria due to this interpopulation communication in
the rhizosphere stimulate each other in the expression
of traits beneficial for plant growth or it is a
cumulative effect of two bacteria.
In conclusion, these results show that the strain
IMBG 163 has good colonization capacity in the rhizo
sphere of wheat. However, it is necessary not only to
provide the right bacterium, but also the correct
techniques to check the fate of the inoculum in order
Biometrical data on effects of inoculation with plant growth promoting bacteria Pseudomonas sp. IMBG 163 on growth parameters of the
30-day wheat seedlings
Dry weight of a single plant, g Shoot height, cm Root length, cm
Control
Pseudomonas sp. IMBG 163
Paenibacillus sp. IMBG 156
Pseudomonas sp. IMBG 163 and
Paenibacillus sp. IMBG 156
0 , 0 3 5 ± 0 , 0 0 2 a
0 , 0 4 4 ± 0 , 0 0 2 b
0 , 0 3 6 ± 0 , 0 0 8 a
0 , 0 4 5 ± 0 , 0 0 3 b
4 0 , 4 6 6 ± 1,003a
4 4 , 3 1 6 ± l , 0 3 6 b
4 4 , 8 5 6 ± l , 2 1 2 b
4 5 , 1 7 3 ± l , 3 3 4 b
9 ,215±0 ,434a
l l , 0 8 0 ± 0 , 4 5 7 b
10 ,960±0 ,460a
l l , 6 6 5 ± 0 , 6 8 9 b
N o t e . Error represents standard deviation. Treatment is different from the control at p = 0.05 as determined by Student's Mest. Values
followed by the same letter in a column are not significantly different.
532
MONITORING OF T H E B I O C O N T R O L A G E N T P S E U D O M O N A S sp. IMBG
to establish the most suitable way to use the micro
organisms in agriculture.
Monitoring the strain was carried out by a
culture-independent method in order to detect the
bacterium in a case when it entered in unculturable
state under some unfavorable conditions. We used a
PCR method targeting 16S ribosomal DNA for spe
cific detection of Pseudomonas DNA in both plant
and substratum DNA. A pair of primers, the universal
9—27 and specific for Pseudomonas DNA, PSM,
creates amplicon of 445 bp [9]. The restriction
enzyme Sail generates three fragments of around 75,
120 and 250 bp specific for Pseudomonas sp.
IMBG163 (fig. 2). Periodical samplings and amp
lifications showed presence of the bacterium DNA in
total DNA isolated from the plant roots.
M. В. Ковальчук, Т. Л. Литвиненко, О. В. Кононученко,
Т. М. Вознюк, С. Ю. Римар, В. В. Негруцька, Н. О. Козировська
Колонізаційна здатність та моніторинг біоконтролюючого агента
Pseudomonas sp. IMBG 163 на коренях пшениці
Резюме
Вивчено вплив бактерії Pseudomonas sp. JMBG163 на паростки
пшениці (Triticum aestivum L, сорт Катюша). Згаданий штам
мітили репортерним gus геном для дослідження способу ко
лонізації та моніторингу присутності бактерії на коренях
рослини. Штам IMBGJ63 значно збільшував усі вимірювані
біометричні параметри: суху масу рослини, висоту пагонів та
довжину коріння. При спільному культивуванні IMBG163 з
бактерією, яка сприяє росту рослин (Paenibacillus sp.
IMBG 156), спостерігається зростання ростстимулювальних
ефектів. Детекцію міченої досліджуваної бактерії в/на рослині
проводили за допомогою гістохімічного аналізу, при цьому не
виявлено ендофітного характеру колонізації. Для моніторингу
IMBG163 у ризосфері пшениці застосовували незалежну від
культивування бактерій методику ARDRA (рестрикційний
аналіз ампліфікованої рДНК). Завдяки поєднанню традиційних
і молекулярних методів доведено, що IMBG163 ефективно та
стабільно колонізує корені пшениці.
М. В. Ковальчук, Т. Л. Литвиненко, О. В. Кононученко,
Т. Н. Вознюк, С. Е. Рымарь, В. В. Негруцкая,
Н. А. Козыровская
Колонизационная способность и мониторинг
биоконтролирующего агента Pseudomonas sp. IMBG 163
на корнях пшеницы
Резюме
Изучено влияние бактерии Pseudomonas sp. IMBGJ63 на проро
стки пшеницы (Triticum aestivum, сорт Катюша). Этот
штамм метили репортерным gus геном для исследования
способа колонизации и мониторинга его присутствия на кор
нях растения. Штамм IMBG163 значительно повышал все
измеряемые биометрические параметры: сухую массу расте
ния, высоту побегов и длину корней. При совместном культи
вировании IMBG163 с бактерией, способствующей росту рас
тений (Paenibacillus sp. IMBG 156), наблюдается возрастание
ростстимулирующих эффектов. Детекцию меченой исследо
ванной бактерии в/на растении проводили с помощью гисто
химического анализа» при этом не обнаружено эндофитного
характера колонизации. Для мониторинга IMBGJ63 в ризос
фере пшеницы применяли не зависимый от культивирования
бактерий метод ARDRA (рестрикционный анализ амплифици-
рованной рДНК). Используя комбинацию традиционных и мо
лекулярных методов доказано, что IMBG163 эффективно и
стабильно колонизирует корни пшеницы.
REFERENCES
1. Montesinos Е. Development, registration and commercializa
tion of microbial pesticides for plant protection / / Int. Mic
robiol .—2003.—6.—P. 245—252 .
2. Wiehe W., Hoflich G. Establishment of plant growth promoting
bacteria in the rhizosphere of subsequent plants after harvest
of the inoculated precrops / / Microbiol. Res .—1995.—150 —
P. 331—336.
3. Kovalchuk M. V., Negrutska V. V., Zaetz I. E., Pasechnik L.
A., Gvozdyak R. J., Kozyrovska N. O. Ecologically-friendly
crop production with microbial inoculants. II. Biocontrol ca
pacity of bacterial isolates, candidates for inoculant develop
ment / / Int. Conf. Natural Ecosystems of the Carpathian
Mountains Under Conditions of Intensive Anthropogenic Impact
(October 4—7, 2 0 0 1 , Uzhhorod, Ukraine) .—Uzhhorod,
2001.—P. 82—85.
4. Ease C, Hottinger M., Moenne-Loccoz Y. Survival and cell
culturability of biocontrol Pseudomonas fluorescens СНА0 in
the rhizosphere of cucumber grown in two soils of contrasting
fertility status / / Biol, and Fert. Soi ls .—2000.—32.—P. 217—
221.
5. Mascher F., Hase C, Moenne-Loccoz Y., Defago G. The
viable-but-nonculturable state induced by abiotic stress in the
biocontrol agent Pseudomonas fluorescens СНА0 does not
promote strain persistence in soil / / Appl. Environ. Micro
biol .—2000.—66.—P. 1662—1667.
6. Lee K, Lim J. В., Yum J. H., Yong D., С hong Y., Kim J. M.,
Livermore D. M. b l a V I M „ 2 cassette-containing novel integrons in
metallo-jS-lactamase-producing Pseudomonas aeruginosa and
Pseudomonas putida isolates disseminated in a Korean hospital
/ / Antimicrob. Agents and Chemother . — 2 0 0 2 . — 4 6 . —
P. 1053—1058.
7. Docquier J. D., Riccio M. L, Mugnaioli C, Luzzaro F.,
Endimiani A., Toniolo A., Amicosante G., Rossolini G. M.
IMP-12, a new plasmid-encoded metallo-^-lactamase from a
Pseudomonas putida clinical isolate / / Antimicrob. Agents and
Chemother.—2003.—47.—P. 1522—1528.
8. Van Elsas J. D., Duarte G. F., Rosado A. S., Smalla К
Microbiological and molecular biological methods for monito
ring microbial inoculants and their effects in the soil environ
ment / / J. Microbiol. Meth .—1998.—32.—P. 133—154.
9. Johnsen K, Enger Q., Jacobsen C. S., Thirup L, Torsvik V.
Quantitative selective PCR of 16S ribosomal DNA correlates
well with selective agar plating in describing population dy
namics of indigenous Pseudomonas spp. in soil hot spots / /
Appl. Environ. Microbiol .—1999.—65.—P. 1786—1788.
10. Rezzonico F., Moenne-Loccoz Y., Defago G. Effect of stress on
the ability of a phlA-based quantitative competitive PCR assay
to monitor biocontrol strain Pseudomonas fluorescens СНА0 / /
Appl. Environ. Microbiol .—2003.—69.—P. 686—690.
11. Miller J. H. Experiments in molecular genetics.—New York:
Cold Spring Harbor Lab. press, 1972.—436 p..
12. Пат. України 22797A. Спосіб отримання біопрепарату / Н.
О. Козировська, О. М. Громозова / / Опубл. 21.04.98.
533
KOVALCHUK M. V. ET AL.
13. Tang Y. M.f Bonner J. The enzymatic inactivation of in-
doleacetic acid. 1. Some characteristics of the enzyme con
tained in pea seedlings / / Arch. Biochem.—1947.—13.—
P. 11—25.
14. King E. O., Ward M. K, Raney D. E. Two simple media for
the demonstration of pyocyanin and fluorescin / / J . Lab. Clin.
Med.—1954.—44.—P. 301—307 .
15. Аристовская Т. В., Владимирская М. Е., Голлербах М. М.
Большой практикум по микробиологии / Под ред. Г. Л.
Селибера.—М.: Высш. шк., 1962.—490 с.
16. Kovalchuk М. V, Negrutska V. V.f Kovtunovych G. L., bar О.
V, Korniichuk O. S.t Rogutskyi I. S.t Alpatov A. P.t
Kozyrovska N. O., Kordyum V. A. Modeling the pNARSLux
transfer in the wheat rhizosphere under simulated microgravity
/ / Kosmichna nauka і technologiya (Suppl . ) .—2003.—9,
N 2.—P. 10—14.
17. Wilson K. J., Sessitsch A , Corbo J. C , Jiller К E.,
Akkermans A. D. L., Jefferson R. A. /^-Glucuronidase (GUS)
transports for ecological and genetic studies of rhizobia and
other Gram-negative bacteria / / Microbiology.—1995.—
141.—P. 1691—1705.
18. Dobbelaere S., Vanderleyden Okon Y. Plant growth-
promoting effects of diazotrophs in the rhizosphere / / Crit.
Revs Plant Sc i .—2003.—22, N 2 .—P. 107—149.
19. Troxler /., Zala M., Moenne-Loccoz Y., Keel C , Defago G.
Predominance of nonculturable cells of the biocontrol strain
Pseudomonas fluorescens СНА0 in the surface horizon of large
outdoor lysimeters / / Appl. Environ. Microbiol.—1997.—63.—
P. 3776—3782.
20. Normander В., Hendriksen N. В., Nybroe O. Green fluores
cent protein-marked Pseudomonas fluorescens: localization,
viability, and activity in the natural barley rhizosphere / / Appl.
Environ. Microbiol .—1999.—65.—P. 4646—4651 .
21. Bjbrklbf K, Sen R., Jorgensen K. S. Maintenance and impacts
of an inoculated mer/luc-tagged Pseudomonas fluorescens on
microbial communities in birch rhizospheres developed on
humus and peat / / Microb. Eco l .—2003 .—45.—P. 39—52.
22. Raaijmakers J. M., Weller D. M. Exploiting genotypic diversity
of 2,4-diacetylphloroglucinol-producing Pseudomonas spp.:
characterization of superior root-colonizing P. fluorescens stra
in Q 8 r l - 9 6 / / Appl. Environ. Microbiol .—2001.—67.—
P. 2545—2554.
23. McSpadden-Gardener В. В., Schroeder K. L, Kalloger S. E.,
Raaijmakers J. M., Tnomas now L. S., Weller D. M. Genotypic
and phenotypic diversity of phlD-containing Pseudomonas
strains isolated from the rhizosphere of wheat / / Appl.
Environ. Microbiol.—2000.—66.—P. 1939—1946.
24. Van Overbeek L. S., Van Veen J. A., Van Elsas J. D. Induced
reporter gene activity, enhanced stress resistance, and competi
tive ability of a genetically modified Pseudomonas fluorescens
strain released into a field plot planted with wheat / / Appl.
Environ. Microbiol.—1997.—63.—P. 1965—1973.
25. Glandorf D. C. M.t Verheggen P., Jansen T, Jorritsma J.-W.,
Smit E., Leeflang P., Wernars K, Thomas how L S., Laureijs
E., Thomas-Oates J. E., Bakker P. A. H. M., van Loon L C.
Effect of genetically modified Pseudomonas putida WCS358r
on the fungal rhizosphere microflora of field-grown wheat / /
Appl. Environ. Microbiol.—2001.—67.—P. 3371—3378.
26. Viebahn M., Glandorf D. С. M., Ouwens T. W. M., Smit E.,
Leeflang P., Wernars K, Thomashow L. S., van Loon L C.t
Bakker P. A. H. M. Repeated introduction of genetically
modified Pseudomonas putida WCS358r without intensified
effects on the indigenous microflora of field-grown wheat / /
Appl. Environ. Microbiol.—2003.—69.— P. 3110—3118.
27. Benizni E., Schoeny A., Pichard C, Guckert A. External and
internal colonization of maize by two Pseudomonas strains:
enumeration by enzyme-linked immunosorbent assay (ELISA)
/ / Curr. Microbiol.—1997.—34.—P. 297—302.
28. Quadt-Hallmann A., Benhamou N., Kloepper J. W. Bacterial
endophytes in cotton: mechanisms of entering the plant / / Can.
J. Microbiol.—1997.—43.—P. 577—582 .
29. Garbeva P.t Overbeek L. S., Vuurde J. W., Elsas J. D.
Analysis of endophytic bacterial communities of potato by
plating and denaturing gradient gel electrophoresis (DGGE) of
16S rDNA based PCR fragments / / Microb. Ecol .—2001.—
4 1 , N 4 .—P. 369—383 .
30. Reiter В., Pfeifer U.y Schwab H., Sessitsch A. Response of
endophytic bacterial communities in potato plants to infection
with Erwinia carotovora subsp. atroseptica / / Appl. Environ.
Microbiol.—2002.—68, N 5 .—P. 2261—2268.
31. Van Peer R., Schippers B. Plant growth responses to bacteriza-
tion with selected Pseudomonas spp. starins and rhizosphere
microbial development in hydroponic cultures / / Can. J.
Microbiol.—1989.—35.—P. 456—463 .
32. Maurhofer M.t Baehler E., Notz R., Martinez V, Keel C.
Cross talk between 2,4-diacetylphloroglucinol-producing bio
control pseudomonads on wheat roots / / Appl. Environ.
Microbiol.—2004.—70.—P. 1990— 1998.
УДК 574:539
Надійшла до редакції 25.12.03
534
|