О наилучшем приближении функций n переменных

Запропоновано поний підхід до розв'язання задачі про найкраще наближення деяким підпростором функцій n змінних, що задаються обмеженнями на модуль неперервності деяких частинних похідних. Цей підхід грунтується на теоремі двоїстості та на зображенні функції як зчисленної суми простих. We propos...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Український математичний журнал
Дата:1999
Автор: Корнейчук, М.П.
Формат: Стаття
Мова:Ukrainian
Опубліковано: Інститут математики НАН України 1999
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/157239
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:О наилучшем приближении функций n переменных / М.П. Корнейчук // Український математичний журнал. — 1999. — Т. 51, № 10. — С. 1352–1359. — Бібліогр.: 8 назв. — укр.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Запропоновано поний підхід до розв'язання задачі про найкраще наближення деяким підпростором функцій n змінних, що задаються обмеженнями на модуль неперервності деяких частинних похідних. Цей підхід грунтується на теоремі двоїстості та на зображенні функції як зчисленної суми простих. We propose a new approach to the solution of the problem of the best approximation, by a certain subspace for functions ofn variables determined by restrictions imposed on the modulus of, continuity of certain partial derivatives. This approach is based on the duality theorem and on the representation of a function as a countable sum of simple functions.