Rings which have (m,n)-flat injective modules
A ring R is said to be a left IF − (m, n) ring if every injective left R-module is (m, n)-flat. In this paper, several characterizations of left IF − (m, n) rings are investigated, some conditions under which R is left IF−(m, n) are given. Furthermore, conditions under which a left IF −1 ring (i...
Збережено в:
| Опубліковано в: : | Algebra and Discrete Mathematics |
|---|---|
| Дата: | 2005 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2005
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/157333 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Rings which have (m,n)-flat injective modules / Z. Zhanmin, X. Zhangsheng // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 4. — С. 93–100. — Бібліогр.: 12 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-157333 |
|---|---|
| record_format |
dspace |
| spelling |
Zhanmin, Z. Zhangsheng, X. 2019-06-20T02:30:38Z 2019-06-20T02:30:38Z 2005 Rings which have (m,n)-flat injective modules / Z. Zhanmin, X. Zhangsheng // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 4. — С. 93–100. — Бібліогр.: 12 назв. — англ. 1726-3255 2000 Mathematics Subject Classification: 16D50, 16E65. https://nasplib.isofts.kiev.ua/handle/123456789/157333 A ring R is said to be a left IF − (m, n) ring if every injective left R-module is (m, n)-flat. In this paper, several characterizations of left IF − (m, n) rings are investigated, some conditions under which R is left IF−(m, n) are given. Furthermore, conditions under which a left IF −1 ring (i.e., IF −(1, 1) ring) is a field, a regular ring and a semisimple ring are studied respectively. We are indebted to the referee for several comments that improved the paper. en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics Rings which have (m,n)-flat injective modules Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Rings which have (m,n)-flat injective modules |
| spellingShingle |
Rings which have (m,n)-flat injective modules Zhanmin, Z. Zhangsheng, X. |
| title_short |
Rings which have (m,n)-flat injective modules |
| title_full |
Rings which have (m,n)-flat injective modules |
| title_fullStr |
Rings which have (m,n)-flat injective modules |
| title_full_unstemmed |
Rings which have (m,n)-flat injective modules |
| title_sort |
rings which have (m,n)-flat injective modules |
| author |
Zhanmin, Z. Zhangsheng, X. |
| author_facet |
Zhanmin, Z. Zhangsheng, X. |
| publishDate |
2005 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
A ring R is said to be a left IF − (m, n) ring if
every injective left R-module is (m, n)-flat. In this paper, several
characterizations of left IF − (m, n) rings are investigated, some
conditions under which R is left IF−(m, n) are given. Furthermore,
conditions under which a left IF −1 ring (i.e., IF −(1, 1) ring) is a
field, a regular ring and a semisimple ring are studied respectively.
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/157333 |
| citation_txt |
Rings which have (m,n)-flat injective modules / Z. Zhanmin, X. Zhangsheng // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 4. — С. 93–100. — Бібліогр.: 12 назв. — англ. |
| work_keys_str_mv |
AT zhanminz ringswhichhavemnflatinjectivemodules AT zhangshengx ringswhichhavemnflatinjectivemodules |
| first_indexed |
2025-12-07T16:43:28Z |
| last_indexed |
2025-12-07T16:43:28Z |
| _version_ |
1850868559829270528 |