Presentations and word problem for strong semilattices of semigroups
Let I be a semilattice, and Si (i ∈ I) be a family of disjoint semigroups. Then we prove that the strong semilattice S = S[I, Si , φj,i] of semigroups Si with homomorphisms φj,i : Sj → Si (j ≥ i) is finitely presented if and only if I is finite and each Si (i ∈ I) is finitely presented. Moreove...
Gespeichert in:
| Veröffentlicht in: | Algebra and Discrete Mathematics |
|---|---|
| Datum: | 2005 |
| Hauptverfasser: | , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2005
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/157334 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Presentations and word problem for strong semilattices of semigroups / G. Ayık, H. Ayık, Y. Unlu // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 4. — С. 28–35. — Бібліогр.: 11 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | Let I be a semilattice, and Si (i ∈ I) be a family
of disjoint semigroups. Then we prove that the strong semilattice
S = S[I, Si
, φj,i] of semigroups Si with homomorphisms φj,i : Sj →
Si (j ≥ i) is finitely presented if and only if I is finite and each
Si (i ∈ I) is finitely presented. Moreover, for a finite semilattice
I, S has a soluble word problem if and only if each Si (i ∈ I)
has a soluble word problem. Finally, we give an example of nonautomatic semigroup which has a soluble word problem.
|
|---|---|
| ISSN: | 1726-3255 |