Action type geometrical equivalence of representations of groups
In the paper we prove (Theorem 8.1) that there exists a continuum of non isomorphic simple modules over KF₂, where F₂ is a free group with 2 generators (compare with [Ca] where a continuum of non isomorphic simple 2-generated groups is constructed). Using this fact we give an example of a non ac...
Збережено в:
| Опубліковано в: : | Algebra and Discrete Mathematics |
|---|---|
| Дата: | 2005 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут прикладної математики і механіки НАН України
2005
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/157336 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Action type geometrical equivalence of representations of groups / B. Plotkin, A. Tsurkov // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 4. — С. 48–79. — Бібліогр.: 17 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-157336 |
|---|---|
| record_format |
dspace |
| spelling |
Plotkin, B. Tsurkov, A. 2019-06-20T02:31:10Z 2019-06-20T02:31:10Z 2005 Action type geometrical equivalence of representations of groups / B. Plotkin, A. Tsurkov // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 4. — С. 48–79. — Бібліогр.: 17 назв. — англ. 1726-3255 https://nasplib.isofts.kiev.ua/handle/123456789/157336 In the paper we prove (Theorem 8.1) that there exists a continuum of non isomorphic simple modules over KF₂, where F₂ is a free group with 2 generators (compare with [Ca] where a continuum of non isomorphic simple 2-generated groups is constructed). Using this fact we give an example of a non action type logically Noetherian representation (Section 9). en Інститут прикладної математики і механіки НАН України Algebra and Discrete Mathematics Action type geometrical equivalence of representations of groups Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Action type geometrical equivalence of representations of groups |
| spellingShingle |
Action type geometrical equivalence of representations of groups Plotkin, B. Tsurkov, A. |
| title_short |
Action type geometrical equivalence of representations of groups |
| title_full |
Action type geometrical equivalence of representations of groups |
| title_fullStr |
Action type geometrical equivalence of representations of groups |
| title_full_unstemmed |
Action type geometrical equivalence of representations of groups |
| title_sort |
action type geometrical equivalence of representations of groups |
| author |
Plotkin, B. Tsurkov, A. |
| author_facet |
Plotkin, B. Tsurkov, A. |
| publishDate |
2005 |
| language |
English |
| container_title |
Algebra and Discrete Mathematics |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
In the paper we prove (Theorem 8.1) that there
exists a continuum of non isomorphic simple modules over KF₂,
where F₂ is a free group with 2 generators (compare with [Ca]
where a continuum of non isomorphic simple 2-generated groups is
constructed). Using this fact we give an example of a non action
type logically Noetherian representation (Section 9).
|
| issn |
1726-3255 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/157336 |
| citation_txt |
Action type geometrical equivalence of representations of groups / B. Plotkin, A. Tsurkov // Algebra and Discrete Mathematics. — 2005. — Vol. 4, № 4. — С. 48–79. — Бібліогр.: 17 назв. — англ. |
| work_keys_str_mv |
AT plotkinb actiontypegeometricalequivalenceofrepresentationsofgroups AT tsurkova actiontypegeometricalequivalenceofrepresentationsofgroups |
| first_indexed |
2025-12-07T20:38:03Z |
| last_indexed |
2025-12-07T20:38:03Z |
| _version_ |
1850883318464118784 |