Groups associated with modules over nearrings

We construct a group D(I, T) associated with the pair (I, T), where I is a nontrivial distributive submodule of a left N-module G, T is a nontrivial subgroup of the unit group U(N) of a right nearring N with an identity element, and find criteria for D(I, T) to be a Frobenius group. We construc...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Algebra and Discrete Mathematics
Дата:2007
Автори: Artemovych, O.D., Kravets, I.V.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2007
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/157341
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Groups associated with modules over nearrings / O.D. Artemovych, I.V. Kravets // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 2. — С. 16–21. — Бібліогр.: 4 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-157341
record_format dspace
spelling Artemovych, O.D.
Kravets, I.V.
2019-06-20T02:41:32Z
2019-06-20T02:41:32Z
2007
Groups associated with modules over nearrings / O.D. Artemovych, I.V. Kravets // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 2. — С. 16–21. — Бібліогр.: 4 назв. — англ.
1726-3255
https://nasplib.isofts.kiev.ua/handle/123456789/157341
We construct a group D(I, T) associated with the pair (I, T), where I is a nontrivial distributive submodule of a left N-module G, T is a nontrivial subgroup of the unit group U(N) of a right nearring N with an identity element, and find criteria for D(I, T) to be a Frobenius group. We construct a group D(I, T) associated with the pair (I, T), where I is a nontrivial distributive submodule of a left N-module G, T is a nontrivial subgroup of the unit group U(N) of a right nearring N with an identity element, and find criteria for D(I, T) to be a Frobenius group.
Dedicated to V.I. Sushchansky on the occasion of his 60th birthday
en
Інститут прикладної математики і механіки НАН України
Algebra and Discrete Mathematics
Groups associated with modules over nearrings
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Groups associated with modules over nearrings
spellingShingle Groups associated with modules over nearrings
Artemovych, O.D.
Kravets, I.V.
title_short Groups associated with modules over nearrings
title_full Groups associated with modules over nearrings
title_fullStr Groups associated with modules over nearrings
title_full_unstemmed Groups associated with modules over nearrings
title_sort groups associated with modules over nearrings
author Artemovych, O.D.
Kravets, I.V.
author_facet Artemovych, O.D.
Kravets, I.V.
publishDate 2007
language English
container_title Algebra and Discrete Mathematics
publisher Інститут прикладної математики і механіки НАН України
format Article
description We construct a group D(I, T) associated with the pair (I, T), where I is a nontrivial distributive submodule of a left N-module G, T is a nontrivial subgroup of the unit group U(N) of a right nearring N with an identity element, and find criteria for D(I, T) to be a Frobenius group. We construct a group D(I, T) associated with the pair (I, T), where I is a nontrivial distributive submodule of a left N-module G, T is a nontrivial subgroup of the unit group U(N) of a right nearring N with an identity element, and find criteria for D(I, T) to be a Frobenius group.
issn 1726-3255
url https://nasplib.isofts.kiev.ua/handle/123456789/157341
citation_txt Groups associated with modules over nearrings / O.D. Artemovych, I.V. Kravets // Algebra and Discrete Mathematics. — 2007. — Vol. 6, № 2. — С. 16–21. — Бібліогр.: 4 назв. — англ.
work_keys_str_mv AT artemovychod groupsassociatedwithmodulesovernearrings
AT kravetsiv groupsassociatedwithmodulesovernearrings
first_indexed 2025-11-30T16:38:51Z
last_indexed 2025-11-30T16:38:51Z
_version_ 1850858139679719424